scholarly journals Polydatin Protecting Kidneys against Hemorrhagic Shock-Induced Mitochondrial DysfunctionviaSIRT1 Activation and p53 Deacetylation

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Zhenhua Zeng ◽  
Zhongqing Chen ◽  
Siqi Xu ◽  
Qin Zhang ◽  
Xingmin Wang ◽  
...  

Objectives.To ascertain if mitochondrial dysfunction (MD) of kidney cells is present in severe hemorrhagic shock and to investigate whether polydatin (PD) can attenuate MD and its protective mechanisms.Research Design and Methods.Renal tubular epithelial cells (RTECs) from rat kidneys experiencing HS and a cell line (HK-2) under hypoxia/reoxygenation (H/R) treatment were used. Morphology and function of mitochondria in isolated RTECs or cultured HK-2 cells were evaluated, accompanied by mitochondrial apoptosis pathway-related proteins.Result.Severe MD was found in rat kidneys, especially in RTECs, as evidenced by swollen mitochondria and poorly defined cristae, decreased mitochondrial membrane potential (ΔΨm), and reduced ATP content. PD treatment attenuated MD partially and inhibited expression of proapoptotic proteins. PD treatment increased SIRT1 activity and decreased acetylated-p53 levels. Beneficial effect of PD was abolished partially when the SIRT1 inhibitor Ex527 was added. Similar phenomena were shown in the H/R cell model; when pifithrin-α(p53 inhibitor) was added to the PD/Ex527 group, considerable therapeutic effects were regained compared with the PD group apart from increased SIRT1 activity.Conclusions.MD is present in severe HS, and PD can attenuate MD of RTECsviathe SIRT1-p53 pathway. PD might be a promising therapeutic drug for acute renal injury.

2021 ◽  
Author(s):  
Jun Bai ◽  
Hailan Wang ◽  
Changzhen Sun ◽  
Jianv Wang ◽  
Li Liu ◽  
...  

Abstract Melanoma is the most aggressive skin cancer with high mortality. It is vital to develop novel low toxicity drugs with anti-proliferation activity and metastasis suppressive activity in melanoma. Here, we reported a novel anti-tumor drug SCZ0148, and then investigated its inhibition effect on melanoma. The anticancer efficacy of SCZ0148 was confirmed by using cytotoxicity test, colony formation assay, wound-healing assay, cell apoptosis detection, mitochondrial potential assay, reactive oxygen species (ROS) production and western-blot analysis. The cytotoxicity test showed that SCZ0148 inhibited melanoma cell lines proliferation in a dose- and time-dependent manner without obvious toxicity and side effects on normal cells. The results of the colony formation assay were in agreement with the cytotoxicity test. In addition, SCZ0148 induced melanoma cell apoptosis and promoted cell destructive autophagy through the ROS-mediated mitochondrial apoptosis pathway. Notably, SCZ0148 significantly inhibited the migration of melanoma cells through the matrix metalloprotein 9 (MMP-9) mediated pathway. In conclusion, these findings suggest that SCZ0148 may be a potential therapeutic drug to inhibit the proliferation and metastasis of melanoma.


2016 ◽  
Vol 311 (1) ◽  
pp. G180-G191 ◽  
Author(s):  
Geeta Rao ◽  
Vivek R. Yadav ◽  
Shanjana Awasthi ◽  
Pamela R. Roberts ◽  
Vibhudutta Awasthi

Gut barrier dysfunction is the major trigger for multiorgan failure associated with hemorrhagic shock (HS). Although the molecular mediators responsible for this dysfunction are unclear, oxidative stress-induced disruption of proteostasis contributes to the gut pathology in HS. The objective of this study was to investigate whether resuscitation with nanoparticulate liposome-encapsulated hemoglobin (LEH) is able to restore the gut proteostatic mechanisms. Sprague-Dawley rats were recruited in four groups: control, HS, HS+LEH, and HS+saline. HS was induced by withdrawing 45% blood, and isovolemic LEH or saline was administered after 15 min of shock. The rats were euthanized at 6 h to collect plasma and ileum for measurement of the markers of oxidative stress, unfolded protein response (UPR), proteasome function, and autophagy. HS significantly increased the protein and lipid oxidation, trypsin-like proteasome activity, and plasma levels of IFNγ. These effects were prevented by LEH resuscitation. However, saline was not able to reduce protein oxidation and plasma IFNγ in hemorrhaged rats. Saline resuscitation also suppressed the markers of UPR and autophagy below the basal levels; the HS or LEH groups showed no effect on the UPR and autophagy. Histological analysis showed that LEH resuscitation significantly increased the villus height and thickness of the submucosal and muscularis layers compared with the HS and saline groups. Overall, the results showed that LEH resuscitation was effective in normalizing the indicators of proteostasis stress in ileal tissue. On the other hand, saline-resuscitated animals showed a decoupling of oxidative stress and cellular protective mechanisms.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3060
Author(s):  
Shin-Ruen Yang ◽  
Szu-Chun Hung ◽  
Lichieh Julie Chu ◽  
Kuo-Feng Hua ◽  
Chyou-Wei Wei ◽  
...  

Renal tubulointerstitial lesions (TILs), a common pathologic hallmark of chronic kidney disease that evolves to end-stage renal disease, is characterized by progressive inflammation and pronounced fibrosis of the kidney. However, current therapeutic approaches to treat these lesions remain largely ineffectual. Previously, we demonstrated that elevated IL-36α levels in human renal tissue and urine are implicated in impaired renal function, and IL-36 signaling enhances activation of NLRP3 inflammasome in a mouse model of TILs. Recently, we synthesized NSC828779, a salicylanilide derivative (protected by U.S. patents with US 8975255 B2 and US 9162993 B2), which inhibits activation of NF-κB signaling with high immunomodulatory potency and low IC50, and we hypothesized that it would be a potential drug candidate for renal TILs. The current study validated the therapeutic effects of NSC828779 on TILs using a mouse model of unilateral ureteral obstruction (UUO) and relevant cell models, including renal tubular epithelial cells under mechanically induced constant pressure. Treatment with NSC828779 improved renal lesions, as demonstrated by dramatically reduced severity of renal inflammation and fibrosis and decreased urinary cytokine levels in UUO mice. This small molecule specifically inhibits the IL-36α/NLRP3 inflammasome pathway. Based on these results, the beneficial outcome represents synergistic suppression of both the IL-36α-activated MAPK/NLRP3 inflammasome and STAT3- and Smad2/3-dependent fibrogenic signaling. NSC828779 appears justified as a new drug candidate to treat renal progressive inflammation and fibrosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chung-Jen Chiang ◽  
Yan-Hong Hong

AbstractButyrate has a bioactive function to reduce carcinogenesis. To achieve targeted cancer therapy, this study developed bacterial cancer therapy (BCT) with butyrate as a payload. By metabolic engineering, Escherichia coli Nissle 1917 (EcN) was reprogrammed to synthesize butyrate (referred to as biobutyrate) and designated EcN-BUT. The adopted strategy includes construction of a synthetic pathway for biobutyrate and the rational design of central metabolism to increase the production of biobutyrate at the expense of acetate. With glucose, EcN-BUT produced primarily biobutyrate under the hypoxic condition. Furthermore, human colorectal cancer cell was administrated with the produced biobutyrate. It caused the cell cycle arrest at the G1 phase and induced the mitochondrial apoptosis pathway independent of p53. In the tumor-bearing mice, the injected EcN-BUT exhibited tumor-specific colonization and significantly reduced the tumor volume by 70%. Overall, this study opens a new avenue for BCT based on biobutyrate.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Omayma A. R. Abozaid ◽  
Lobna M. Anees ◽  
Gehan R. Abdel-Hamed

Abstract Background The purpose of this study was to investigate the effectiveness of Persea Americana (avocado) oil against diethylnitrosamine (DEN)-induced hepatotoxicity in rats. Methods For the induction of hepatotoxicity, DEN was administrated orally in a dose of 20 mg/kg B.wt for 6 successive weeks, and then the animals were gavaged with Persea Americana oil in a dose of 4 mL/kg b.wt. daily for another 6 weeks. Serum caspase-3 activity and poly (ADP-ribose) polymerase-1 (PARP-1) levels were estimated; in addition to gene expressions for NADPH oxidase, inducible nitric oxide synthase (iNOS), Bcl-2, and Bax were detected. Results The DEN-intoxicated group exhibited a remarkable increase in NADPH oxidase and iNOS expression combined with over-activation of PARP-1 and increased antiapoptotic Bcl-2 gene expression, whereas the expression of apoptotic biomarkers significantly decreased. On the other hand, treatment with Persea Americana oil significantly suppressed the elevated levels of hepatic enzymes and improved histopathological alterations in the liver. Furthermore, these groups displayed marked downregulation in NADPH oxidase and iNOS expressions. Persea Americana oil suppressed the expression of the antiapoptotic Bcl-2, activated the intrinsic mitochondrial apoptosis pathway through upregulation of pro-apoptotic Bax, and induced an obvious increase in caspase-3 activity. Moreover, Persea Americana oil administration markedly inhibited the activity of PARP-1. Conclusions This study indicated the promising potential of Persea Americana oil against DEN-induced hepatic injury through its anti-oxidative activity and pro-apoptotic effect via caspase activation and PARP-1 inhibition.


Sign in / Sign up

Export Citation Format

Share Document