scholarly journals A Coupled Phase-Temperature Model for Dynamics of Transient Neuronal Signal in Mammals Cold Receptor

2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Firman Ahmad Kirana ◽  
Husin Alatas ◽  
Irzaman Sulaiman Husein

We propose a theoretical model consisting of coupled differential equation of membrane potential phase and temperature for describing the neuronal signal in mammals cold receptor. Based on the results from previous work by Roper et al., we modified a nonstochastic phase model for cold receptor neuronal signaling dynamics in mammals. We introduce a new set of temperature adjusted functional parameters which allow saturation characteristic at high and low steady temperatures. The modified model also accommodates the transient neuronal signaling process from high to low temperature by introducing a nonlinear differential equation for the “effective temperature” changes which is coupled to the phase differential equation. This simple model can be considered as a candidate for describing qualitatively the physical mechanism of the corresponding transient process.

2019 ◽  
Vol 6 (2) ◽  
pp. a1-a7
Author(s):  
N. V. Lishchenko ◽  
V. P. Larshin ◽  
H. Krachunov

A study of a simplified mathematical model for determining the grinding temperature is performed. According to the obtained results, the equations of this model differ slightly from the corresponding more exact solution of the one-dimensional differential equation of heat conduction under the boundary conditions of the second kind. The model under study is represented by a system of two equations that describe the grinding temperature at the heating and cooling stages without the use of forced cooling. The scope of the studied model corresponds to the modern technological operations of grinding on CNC machines for conditions where the numerical value of the Peclet number is more than 4. This, in turn, corresponds to the Jaeger criterion for the so-called fast-moving heat source, for which the operation parameter of the workpiece velocity may be equivalently (in temperature) replaced by the action time of the heat source. This makes it possible to use a simpler solution of the one-dimensional differential equation of heat conduction at the boundary conditions of the second kind (one-dimensional analytical model) instead of a similar solution of the two-dimensional one with a slight deviation of the grinding temperature calculation result. It is established that the proposed simplified mathematical expression for determining the grinding temperature differs from the more accurate one-dimensional analytical solution by no more than 11 % and 15 % at the stages of heating and cooling, respectively. Comparison of the data on the grinding temperature change according to the conventional and developed equations has shown that these equations are close and have two points of coincidence: on the surface and at the depth of approximately threefold decrease in temperature. It is also established that the nature of the ratio between the scales of change of the Peclet number 0.09 and 9 and the grinding temperature depth 1 and 10 is of 100 to 10. Additionally, another unusual mechanism is revealed for both compared equations: a higher temperature at the surface is accompanied by a lower temperature at the depth. Keywords: grinding temperature, heating stage, cooling stage, dimensionless temperature, temperature model.


2000 ◽  
Vol 12 (5) ◽  
pp. 1067-1093 ◽  
Author(s):  
Peter Roper ◽  
Paul C. Bressloff ◽  
André Longtin

We present a tractable stochastic phase model of the temperature sensitivity of a mammalian cold receptor. Using simple linear dependencies of the amplitude, frequency, and bias on temperature, the model reproduces the experimentally observed transitions between bursting, beating, and stochastically phase-locked firing patterns. We analyze the model in the deterministic limit and predict, using a Strutt map, the number of spikes per burst for a given temperature. The inclusion of noise produces a variable number of spikes per burst and also extends the dynamic range of the neuron, both of which are analyzed in terms of the Strutt map. Our analysis can be readily applied to other receptors that display various bursting patterns following temperature changes.


2020 ◽  
Vol 154 ◽  
pp. 01004
Author(s):  
Ewa Golisz ◽  
Małgorzata Jaros ◽  
Szymon Głowacki

The goal of the work was to propose and verify the model of temperature changes of the convective dried biomass depending on the drying time. The algebraic temperature model of the convective dried solid, giving the possibility of its direct calculation, was based on the logistic function of growth. Temperature model was verified for convective dried biomass: vegetable and wood (poplar and willow wood chips) significantly differing in initial moisture content. Parameter W in the temperature model, defined as the coefficient of temperature rate changes reaches greater values in higher temperature of drying air and for wood biomass which has lower initial moisture content. Empirically selected parameter W allows to verify the temperature model with the relative error less than 5%.


2015 ◽  
Vol 22 (5) ◽  
pp. 905-918 ◽  
Author(s):  
S Mukhopadhyay ◽  
R Picard ◽  
S Trostorff ◽  
M Waurick

We discuss the so-called two-temperature model in linear thermoelasticity and provide a Hilbert space framework for proving well-posedness of the equations under consideration. With the abstract perspective of evolutionary equations, the two-temperature model turns out to be a coupled system of the elastic equations and an abstract ordinary differential equation (ODE). Following this line of reasoning, we propose another model which is entirely an abstract ODE. We also highlight an alternative method for a two-temperature model, which might be of independent interest.


1980 ◽  
Vol 24 (1) ◽  
pp. 377-381
Author(s):  
Robert E. Schlegel

An interactive procedure for evaluating and maintaining an individual's core temperature at a predetermined level was developed and tested. The procedure involved the use of previously developed models for predicting core temperature changes during work and rest. Various levels of metabolic activity were used for rapid core temperature elevation and adjustments in dry-bulb temperature and relative humidity maintained the desired core temperature level. Evaluation of the procedure was made using five female subjects at four different levels of elevation. Results are presented which show the accuracy of the control.


1994 ◽  
Vol 30 (2) ◽  
pp. 205-208 ◽  
Author(s):  
Søren Brønd ◽  
Jan Scherfig

Nitrification and denitrification processes are very sensitive to temperature changes below 10 °C. Because of severe eutrophication problems in e.g. Northern Europe Nitrogen removal must be kept throughout the winter. To aid in the design and optimization of treatment plants a dynamic temperature model has been developed. The major findings is that the temperature variation is very dependent on local wind conditions. The model can be used in the design process to minimize factors causing temperature drops during cold weather periods.


Author(s):  
Yeshayahu Talmon

To achieve complete microstructural characterization of self-aggregating systems, one needs direct images in addition to quantitative information from non-imaging, e.g., scattering or Theological measurements, techniques. Cryo-TEM enables us to image fluid microstructures at better than one nanometer resolution, with minimal specimen preparation artifacts. Direct images are used to determine the “building blocks” of the fluid microstructure; these are used to build reliable physical models with which quantitative information from techniques such as small-angle x-ray or neutron scattering can be analyzed.To prepare vitrified specimens of microstructured fluids, we have developed the Controlled Environment Vitrification System (CEVS), that enables us to prepare samples under controlled temperature and humidity conditions, thus minimizing microstructural rearrangement due to volatile evaporation or temperature changes. The CEVS may be used to trigger on-the-grid processes to induce formation of new phases, or to study intermediate, transient structures during change of phase (“time-resolved cryo-TEM”). Recently we have developed a new CEVS, where temperature and humidity are controlled by continuous flow of a mixture of humidified and dry air streams.


Sign in / Sign up

Export Citation Format

Share Document