scholarly journals Differential Gene Expression during Larval Metamorphic Development in the Pearl Oyster, Pinctada fucata, Based on Transcriptome Analysis

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Haimei Li ◽  
Bo Zhang ◽  
Guiju Huang ◽  
Baosuo Liu ◽  
Sigang Fan ◽  
...  

P. fucata experiences a series of transformations in appearance, from swimming larvae to sessile juveniles, during which significant changes in gene expression likely occur. Thus, P. fucata could be an ideal model in which to study the molecular mechanisms of larval metamorphosis during development in invertebrates. To study the molecular driving force behind metamorphic development in larvae of P. fucata, transcriptomes of five larval stages (trochophore, D-shape, umbonal, eyespots, and spats) were sequenced using an Illumina HiSeq™ 2000 system and assembled and characterized with the transcripts of six tissues. As a result, a total of 174,126 unique transcripts were assembled and 60,999 were annotated. The number of unigenes varied among the five larval stages. Expression profiles were distinctly different between trochophore, D-shape, umbonal, eyespots, and spats larvae. As a result, 29 expression trends were sorted, of which eight were significant. Among others, 80 development-related, differentially expressed unigenes (DEGs) were identified, of which the majority were homeobox-containing genes. Most DEGs occurred among trochophore, D-shaped, and UES (umbonal, eyespots, and spats) larvae as verified by qPCR. Principal component analysis (PCA) also revealed significant differences in expression among trochophore, D-shaped, and UES larvae with ten transcripts identified but no matching annotations.

Blood ◽  
2002 ◽  
Vol 99 (2) ◽  
pp. 488-498 ◽  
Author(s):  
In-Kyung Park ◽  
Yaqin He ◽  
Fangming Lin ◽  
Ole D. Laerum ◽  
Qiang Tian ◽  
...  

Abstract Hematopoietic stem cells (HSCs) have self-renewal capacity and multilineage developmental potentials. The molecular mechanisms that control the self-renewal of HSCs are still largely unknown. Here, a systematic approach using bioinformatics and array hybridization techniques to analyze gene expression profiles in HSCs is described. To enrich mRNAs predominantly expressed in uncommitted cell lineages, 54 000 cDNA clones generated from a highly enriched population of HSCs and a mixed population of stem and early multipotent progenitor (MPP) cells were arrayed on nylon membranes (macroarray or high-density array), and subtracted with cDNA probes derived from mature lineage cells including spleen, thymus, and bone marrow. Five thousand cDNA clones with very low hybridization signals were selected for sequencing and further analysis using microarrays on glass slides. Two populations of cells, HSCs and MPP cells, were compared for differential gene expression using microarray analysis. HSCs have the ability to self-renew, while MPP cells have lost the capacity for self-renewal. A large number of genes that were differentially expressed by enriched populations of HSCs and MPP cells were identified. These included transcription factors, signaling molecules, and previously unknown genes.


Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 998 ◽  
Author(s):  
Xiufang Dong ◽  
Hang Qi ◽  
Baoyu He ◽  
Di Jiang ◽  
Beiwei Zhu

Sea cucumber (Apostichopus japonicus) is an economically significant species in China having great commercial value. It is challenging to maintain the textural properties during thermal processing due to the distinctive physiochemical structure of the A. japonicus body wall (AJBW). In this study, the gene expression profiles associated with tenderization in AJBW were determined at 0 h (CON), 1 h (T_1h), and 3 h (T_3h) after treatment at 37 °C using Illumina HiSeq™ 4000 platform. Seven-hundred-and-twenty-one and 806 differentially expressed genes (DEGs) were identified in comparisons of T_1h vs. CON and T_3h vs. CON, respectively. Among these DEGs, we found that two endogenous proteases—72 kDa type IV collagenase and matrix metalloproteinase 16 precursor—were significantly upregulated that could directly affect the tenderness of AJBW. In addition, 92 genes controlled four types of physiological and biochemical processes such as oxidative stress response (3), immune system process (55), apoptosis (4), and reorganization of the cytoskeleton and extracellular matrix (30). Further, the RT-qPCR results confirmed the accuracy of RNA-sequencing analysis. Our results showed the dynamic changes in global gene expression during tenderization and provided a series of candidate genes that contributed to tenderization in AJBW. This can help further studies on the genetics/molecular mechanisms associated with tenderization.


2019 ◽  
Author(s):  
Sara B. Mitchell ◽  
Michael S. Chimenti ◽  
Hiroyuki Kawano ◽  
Tsun Ming Tom Yuen ◽  
Ashley E. Sjurson ◽  
...  

ABSTRACTIn patients with the brain disorder dystonia, body movement is severely affected – with involuntary muscle contractions and abnormal postures, causing extensive deterioration of the patient’s quality of life. The most common inherited form of this disorder is DYT1 dystonia, which is caused by a mutation in TOR1A gene and autosomal dominant. The molecular mechanisms that underlie the effects of the TOR1A mutation on brain function remain unclear. To understand these, we examined the gene expression profiles (transcriptome) in four brain regions (cerebral cortex, hippocampus, striatum and cerebellum) in a mouse model, the heterozygous ΔE-torsinA knock-in mice which genetically reproduce the mutation in DYT1 dystonia. The samples were obtained at 2 to 3 weeks of age, a period during which synaptic abnormalities have been reported. Pairwise comparisons of brain regions revealed differential gene expression irrespective of genotype. A comparison of heterozygous to wild-type mice failed to reveal genotype-dependent differences in gene expression in any of the four brain regions when examined individually. However, genotype-dependent differences became apparent when the information for all brain regions was combined. These results suggest that any changes in the transcriptome within a brain region were subtle at this developmental stage, but that statistically significant changes occur across all brain regions. Such changes in the transcriptome, although subtle in degree, could underlie the processes that give rise to DYT1 dystonia.


2021 ◽  
Author(s):  
Supantha Dey ◽  
Harpreet Kaur ◽  
Elia Brodsky ◽  
Mohit Mazumder

Malaria is a life-threatening disease, and Africa is still one of the most affected endemic regions despite years of policy to limit infection and transmission rates. Further, studies into the variable efficacy of the vaccine are needed to provide a better understanding of protective immunity. Thus, the current study is designed to delineate the effect of the different vaccination doses on the transcriptional profiles of subjects to determine its efficacy and understand the molecular mechanisms underlying the protection this vaccine provides. Here, we used gene expression profiles of pre and post-vaccination patients after various doses of RTS,S based on 275 and 583 samples collected from the GEO datasets. At first, exploratory data analysis based Principal component analysis (PCA) shown the distinct pattern of different doses. Subsequently, differential gene expression analysis using edgeR revealed the significantly (FDR <0.005) 158 down-regulated and 61 upregulated genes between control vs. Controlled Human Malaria Infection (CHMI) samples. Further, enrichment analysis of significant genes using Annotation and GAGE tools delineate the involvement of CCL8, CXCL10, CXCL11, XCR1, CSF3, IFNB1, IFNE, IL12B, IL22, IL6, IL27, etc., genes which found to be upregulated after earlier doses but downregulated after the 3rd dose in cytokine-chemokine pathways. Notably, we identified 13 cytokine genes whose expression significantly varied during three doses. Eventually, these findings give insight into the dual role of cytokine responses in malaria pathogenesis and variations in their expression patterns after various doses of vaccination involved in protection.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Mariom ◽  
Saori Take ◽  
Yoji Igarashi ◽  
Kazutoshi Yoshitake ◽  
Shuichi Asakawa ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 160
Author(s):  
Nadja Gerber ◽  
Magdalena A. T. Brunner ◽  
Vidhya Jagannathan ◽  
Tosso Leeb ◽  
Nora M. Gerhards ◽  
...  

Canine cutaneous epitheliotropic T-cell lymphoma (CETL) and immune-mediated T-cell predominant dermatoses (IMD) share several clinical and histopathological features, but differ substantially in prognosis. The discrimination of ambiguous cases may be challenging, as diagnostic tests are limited and may prove equivocal. This study aimed to investigate transcriptional differences between CETL and IMD, as a basis for further research on discriminating diagnostic biomarkers. We performed 100bp single-end sequencing on RNA extracted from formalin-fixed and paraffin-embedded skin biopsies from dogs with CETL and IMD, respectively. DESeq2 was used for principal component analysis (PCA) and differential gene expression analysis. Genes with significantly different expression were analyzed for enriched pathways using two different tools. The expression of selected genes and their proteins was validated by RT-qPCR and immunohistochemistry. PCA demonstrated the distinct gene expression profiles of CETL and IMD. In total, 503 genes were upregulated, while 4986 were downregulated in CETL compared to IMD. RT-qPCR confirmed the sequencing results for 5/6 selected genes tested, while the protein expression detected by immunohistochemistry was not entirely consistent. Our study revealed transcriptional differences between canine CETL and IMD, with similarities to human cutaneous lymphoma. Differentially expressed genes are potential discriminatory markers, but require further validation on larger sample collections.


Sign in / Sign up

Export Citation Format

Share Document