scholarly journals Fractional-Derivative Maxwell Kelvin Model for “5+4” Viscoelastic Damping Wall Subjected to Large Deformation

2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Junhong Xu ◽  
Aiqun Li ◽  
Yang Shen

Considering the larger vibration amplitude and several viscoelastic material layers, a fractional-derivative Maxwell Kelvin (FDMK) viscoelastic mechanical model is proposed for “5+4” viscoelastic damping wall, which is used for vibration control of building structures. The development of the model is based on in-parallel combination of fractional Maxwell model and fractional Kelvin model. The proposed model is experimentally validated and very good agreement between predicted and experimental results was obtained. The results confirm that the FDMK model is accurate in simulating the hysteresis properties of the “5+4” viscoelastic damping wall under large deformation. From the areas of the experimental and theoretical hysteresis loops, under 300% strain, the predicted result is the most accurate in prediction of the energy dissipation and the second is the prediction under 450% strain. Moreover, from the comparisons of dynamic properties (storage modulus, loss modulus, etc.), the FDMK model works satisfactorily. The FDMK model is more sensitive in energy dissipation than in energy storage.

2006 ◽  
Vol 128 (3) ◽  
pp. 260-267 ◽  
Author(s):  
C. Remillat ◽  
M. R. Hassan ◽  
F. Scarpa

This work illustrates viscoelastic testing and fractional derivative modelling to describe the thermally induced transformation equivalent viscoelastic damping of NiTiCu SMA ribbons. NiTiCu SMA ribbons have been recently evaluated to manufacture novel honeycombs concepts (conventional and negative Poisson’s ratio) in shape memory alloys for high damping and deployable sandwich antennas constructions. The dynamic mechanical thermal analysis (DMTA) test has been carried out at different frequencies and temperatures, with increasing and decreasing temperature gradients. Thermally induced transformations (austenitic and martensitic) provide damping peaks at low frequency range excitations. On the opposite, the storage moduli are not affected by the harmonic pulsation. As the SMA ribbon increases its stiffness, the damping capacity reduces, and the loss factor drops dramatically at austenite finish temperature. The fractional derivative models provide a compact representation of the asymmetry of the peak locations, as well as the storage modulus change from martensite to austenite phases.


Buildings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 470
Author(s):  
Yeshou Xu ◽  
Zhaodong Xu ◽  
Yingqing Guo ◽  
Xinghuai Huang ◽  
Yaorong Dong ◽  
...  

Viscoelastic dampers are a kind of classical passive energy dissipation and vibration control devices which are widely utilized in engineering fields. The mechanical properties and energy dissipation capacity of the viscoelastic damper are significantly affected by ambient temperature. In this work, dynamic properties tests of the sandwich type viscoelastic damper at different environmental temperatures are carried out. The equivalent fractional Kelvin model which can characterize the mechanical behavior of the viscoelastic damper with varying frequencies and temperatures is introduced to describe the dynamic properties and energy dissipation capability of the sandwich viscoelastic damper. The self-heating phenomenon of the sandwich viscoelastic damper is studied with a numerical simulation, and the dynamic properties and energy dissipation variation of the viscoelastic damper with self-heating processes are also analyzed. The results show that the dynamic properties of the viscoelastic damper are significantly affected by temperature, excitation frequency and the internal self-generated heating.


2021 ◽  
Author(s):  
Zhanlong Li ◽  
Zhifei Dong ◽  
Yao Wang ◽  
Zheng Zhang ◽  
Yuan Qin

Abstract Viscoelastic damping material has been widely used in engineering machinery to absorb vibration and noise. In engineering, the dynamic behavior of the viscoelastic material is mainly affected by temperature and frequency. Classical dynamic behavior equations of the viscoelastic damping material have complex structures with multiple and ambiguous parameters. So a novel variable-order fractional constitutive model (VOFC) is established based on the variable-order fractional operator. Then the viscoelastic dynamic equations are derived by the Laplace transform of the VOFC model. The DMA test by the three-point bending mode is carried out at variable temperatures and frequencies and the frequency spectrum of the dynamic behaviors, i.e., the loss modulus, the storage modulus and the loss factor are obtained. Against the test data ,the VOFC model is compared with classical models such as the integer-order Maxwell model (IOM), the constant fractional-order Kelvin-Voigt model (CFK), the constant fractional-order Maxwell model (CFM) and the constant fractional-order standard linear solid model (CFS). Through the comparison , it can be found that the VOFC model can describe dynamic behaviors of the viscoelastic damping material at different temperatures and frequencies more accurately. Furthermore, the VOFC model has simpler structure and only two parameters with clearly-physical meanings.


2019 ◽  
Vol 29 (2) ◽  
pp. 41-49
Author(s):  
Waseem Sarwar

Abstract The supplemental energy dissipation system is a practical approach to attenuate the structural response under extreme loading. Viscoelastic damping used to reinforce the structure against the seismic vibration, Viscoelastic material (VEM) most commonly used in viscoelastic dampers (VEDs). In this paper, dynamic mechanical analysis (DMA) approach is used to investigate the performance index of VEM. It is demonstrated that the performance index, such as storage modulus, loss modulus, and loss factor decrease noticeably as the temperature increases, which reflects the low stiffness at high temperature. Excitation frequency also influenced the performance index, and the reaction has correspondence to temperature. As the temperature increases, the VEM dynamic properties decreases, which represents the rubbery region, and it is found that higher to low-temperature dynamic properties increases, which the glassy region is. DMA is a particularly flexible approach, and it characterizes the properties of VEM simultaneously at various conditions.


Author(s):  
JINLAI ZHOU ◽  
YANG SONG ◽  
CHENGUANG XU ◽  
CHUNQIU ZHANG ◽  
XUE SHI

The periodontal ligament (PDL) exhibits different material mechanical properties along the long axis of the teeth. To explore the creep and the relaxation effects of dissimilar layers of PDL, this paper took the central incisors of porcine mandibular as experimental subjects and divided them perpendicular to the teeth axis into five layers. Creep experiments and relaxation experiments on five layers were conducted to obtain the creep compliance and relaxation modulus at different layers. Linear elastic model, generalized Kelvin model, and generalized Maxwell model were used to describe the major characteristics of the PDL: Instantaneous elasticity, creep and relaxation. Fitting accuracy of three-parameter, five-parameter, and seven-parameter of the model was compared, and the constitutive equations of different layers were established by the least square method. The results presented that the creep strain and the relaxation stress of PDL were exponentially correlated with time under different loading conditions. Different layers showed a significant effect on the creep strain and relaxation stress of PDL. Along the long axis of the teeth, the changing rule of the creep compliance and relaxation modulus of each layer showed quite the contrary, and the instantaneous elastic modulus first decreased to the minimum, then increased to the maximum. Higher instantaneous elastic modulus led to lower creep compliance and higher relaxation modulus. The generalized Kelvin model and the generalized Maxwell model well characterized the creep and relaxation properties of PDL. Fitting accuracy increased with the number of model parameters. The relaxation time of PDL was about one order of magnitude shorter than the creep retardation time, which indicated that the relaxation effect lasted shorter than the creep effect.


2018 ◽  
Vol 86 (1) ◽  
Author(s):  
A. Louhghalam ◽  
M. Tootkaboni ◽  
T. Igusa ◽  
F. J. Ulm

A major contributor to rolling resistance is road roughness-induced energy dissipation in vehicle suspension systems. We identify the parameters driving this dissipation via a combination of dimensional analysis and asymptotic analysis. We begin with a mechanistic model and basic random vibration theory to relate the statistics of road roughness profile and the dynamic properties of the vehicle to dissipated energy. Asymptotic analysis is then used to unravel the dependence of the dissipation on key vehicle and road characteristics. Finally, closed form expressions and scaling relations are developed that permit a straightforward application of the proposed road-vehicle interaction model for evaluating network-level environmental footprint associated with roughness-induced energy dissipation.


2015 ◽  
Vol 9 (1) ◽  
pp. 295-307 ◽  
Author(s):  
Edelis del V. Marquez A. ◽  
William Lobo-Q ◽  
Juan C. Vielma

A comparative study has been done to analyze the behavior of regular steel building structures of 4, 6, 8 and 10 stories, located in seismic zone 5 and soil type S1. The structures were upgraded with different brace configurations according to current Venezuelan codes. A total number of 24 numerical models were analyzed considering non-linear static and incremental dynamic analysis (IDA). The buildings were initially designed as moment resisting frames, and upgraded with six different bracing configurations: concentric braces in “X” and inverted “V”; eccentric braces inverted "V" with horizontal links, inverted “Y” and “X” with vertical links. Short length links were used to ensure a shear failure. The used methodology is based on obtaining the capacity, IDA curves, and bilinear approximations of these curves that allow the determination of yield and ultimate capacity points, in order to estimate important parameters of seismic response: overstrength and ductility; and considering these areas under the curves to estimate elastic deformation energy, energy dissipated by hysteretic damping and equivalent damping. According to the results, the cases with no brace enhancement showed the lowest lateral strength and lateral stiffness and high deformation capacity. On the other hand, the concentric bracing cases, resulted with the highest stiffness and strength and the lowest deformation capacity, therefore they have low ductility and energy dissipation capacity under seismic loading. Structures with links showed intermediate stiffness and strengths, resulting in the best performance in terms of ductility and energy dissipation capacity. The present study provides a better understanding of the benefits of eccentrically braced systems.


1971 ◽  
Vol 44 (1) ◽  
pp. 258-270 ◽  
Author(s):  
D. A. Meyer ◽  
J. G. Sommer

Abstract Important factors of potential use for manipulating static and dynamic stiffness and the damping characteristics of compounds based on styrene-butadiene and polybutadiene elastomers and their blends have been outlined. Their characteristics have been compared with those of IIR and EPDM compounds. The effects of variations in composition are quantitatively defined to assist the compounder in combining these effects in a manner that will lead to a desired combination of properties. In addition to the expected increase in static spring rate and dynamic spring rate with carbon black level, the following responses to compositional variations were found important: 1. The complex dynamic spring rate is more sharply dependent upon carbon black level than the static spring rate. 2. The complex dynamic spring rate is essentially independent of the level of crosslinking while static spring rate increases. 3. Damping coefficient is directly proportional to the level of carbon black and inversely proportional to the level of crosslinking. 4. Styrene level in a polymer blend and plasticizer composition can be used to adjust loss modulus and storage modulus at a given temperature and also to modify the rate of change of these properties with temperature. 5. The strain dependency of storage modulus was found in one instance to vary with the elastomer composition. The IIR vulcanizate, when formulated to the same static modulus, exhibited a larger strain dependence than the SBR, BR, and EPDM composition.


Sign in / Sign up

Export Citation Format

Share Document