scholarly journals The Therapeutic Effect of Adipose-Derived Mesenchymal Stem Cells for Radiation-Induced Bladder Injury

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Xuefeng Qiu ◽  
Shiwei Zhang ◽  
Xiaozhi Zhao ◽  
Kai Fu ◽  
Hongqian Guo

This study was designed to investigate the protective effect of adipose derived mesenchymal stem cells (AdMSCs) against radiation-induced bladder injury (RIBI). Female rats were divided into 4 groups: (a) controls, consisting of nontreated rats; (b) radiation-treated rats; (c) radiation-treated rats receiving AdMSCs; and (d) radiation-treated rats receiving AdMSCs conditioned medium. AdMSCs or AdMSCs conditioned medium was injected into the muscular layer of bladder 24 h after radiation. Twelve weeks after radiation, urinary bladder tissue was collected for histological assessment and enzyme-linked immunosorbent assay (ELISA) after metabolic cage investigation. At the 1 w, 4 w, and 8 w time points following cells injection, 3 randomly selected rats in RC group and AdMSCs group were sacrificed to track injected AdMSCs. Metabolic cage investigation revealed that AdMSCs showed protective effect for radiation-induced bladder dysfunction. The histological and ELISA results indicated that the fibrosis and inflammation within the bladder were ameliorated by AdMSCs. AdMSCs conditioned medium showed similar effects in preventing radiation-induced bladder dysfunction. In addition, histological data indicated a time-dependent decrease in the number of AdMSCs in the bladder following injection. AdMSCs prevented radiation induced bladder dysfunction and histological changes. Paracrine effect might be involved in the protective effects of AdMSCs for RIBI.

2018 ◽  
Vol 28 (1) ◽  
pp. 105-115 ◽  
Author(s):  
JiaYang Sun ◽  
YunFeng Zhang ◽  
XianJi Song ◽  
Jiajing Zhu ◽  
QingSan Zhu

Radioactive dermatitis is caused by the exposure of skin and mucous membranes to radiation fields. The pathogenesis of radioactive dermatitis is complex and difficult to cure. Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) may serve as a promising candidate for the therapy of cutaneous wounds. The aim of this study was to investigate whether a WJ-MSC-derived conditioned medium (MSC-CM) could be used to treat radiation-induced skin wounds in rats using a radiation-induced cutaneous injury model. The present study was designed to examine MSC-CM therapy in the recovery of radiation-induced skin wounds in vitro and in vivo. Firstly, we prepared the MSC-CM and tested the effects of the MSC-CM on human umbilical vein endothelial cell proliferation in vitro. After that, we used a β-ray beam to make skin wounds in rats and tested the effects of MSC-CM on cutaneous wound healing in vivo. Our results indicated that MSC-CM secreted factors that promoted HUVEC proliferation, regeneration of sebaceous glands, and angiogenesis. Importantly, MSC-CM promoted wound healing in excess of the positive control (epidermal growth factor), with no, or smaller, scar formation. In conclusion, MSC-CM significantly accelerated wound closure and enhanced the wound healing quality. MSC-CM has a beneficial therapeutic effect on radiation-induced cutaneous injury skin in rats and in this way MSC-CM may serve as a basis of a novel cell-free therapeutic approach for radiation dermatitis.


2019 ◽  
Vol 11 (2) ◽  
pp. 217-24
Author(s):  
Novi Silvia Hardiany ◽  
Yohana Yohana ◽  
Septelia Inawati Wanandi

BACKGROUND: Glioblastoma multiforme (GBM) is a human malignant brain tumor which is arise from glial cells. Our previous study proved that GBM cells proliferation increased after treating by conditioned medium of umbilical cord-derived mesenchymal stem cells (CM-UCSCs). Cells proliferation is probably mediated by tumor necrosis factor (TNF)-α which could bind to membrane receptor and induce signaling pathway. Therefore, this research was intended to analyze the mRNA expression of TNF-α signaling pathway molecules on CM-treated GBM cells by measuring TNF receptor 1 and 2 (TNFR1 and TNFR2), TNFR associated factor 2 (TRAF2), nuclear factor kappa B (NF-κB) mRNA level, and TNFR2 protein level.METHODS: UCSCs and human glioblastoma T98G cells were cultured and harvested after 80% confluence. CM was prepared by growing UCSCs in serum alpha Minimum Essential Media (α-MEM) for 24 hours. Fifty percent concentration of CM-UCSCs was used to treat T98G cells for 24 hours. TNF-α level in CM-UCSC was detected using enzyme linked-immunosorbent assay (ELISA), while the expression of TNFR1, TNFR2, TRAF2 and NF-κB were detected using quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR), and TNFR2 protein level was detected using sandwich ELISA.RESULTS: TNF-α level was detected in CM-UCSCs 4.4 pg/mL. Moreover, the expression of TNFR1, TNFR2, TRAF2 and NF-κB were significantly 1.4-fold, 4.9-fold, 5.6-fold, 1.8-fold respectively higher in T98G treated cells than control. TNFR2 protein level in T98G treated cells was 11.57 pg/mg protein higher than control.CONCLUSION: The expression of molecules involved in TNF-α signaling pathway were up regulated in T98G cells treated by CM-UCSCs.KEYWORDS: CM-UCSCs, TNFR1, TNFR2, TRAF2, NF-κB, T98G cells


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Yanjun Shen ◽  
Xin Jiang ◽  
Lingbin Meng ◽  
Chengcheng Xia ◽  
Lihong Zhang ◽  
...  

The present study aims to explore the protective effect of human bone marrow mesenchymal stem cells (hBMSCs) on radiation-induced aortic injury (RIAI). hBMSCs were isolated and cultured from human bone marrow. Male C57/BL mice were irradiated with a dose of 18-Gy 6MV X-ray and randomly treated with either vehicle or hBMSCs through tail vein injection with a dose of 103 or 104 cells/g of body weight (low or high dose of hBMSCs) within 24 h. Aortic inflammation, oxidative stress, and vascular remodeling were assessed by immunohistochemical staining at 3, 7, 14, 28, and 84 days after irradiation. The results revealed irradiation caused aortic cell apoptosis and fibrotic remodeling indicated by aortic thickening, collagen accumulation, and increased expression of profibrotic cytokines (CTGF and TGF-β). Further investigation showed that irradiation resulted in elevated expression of inflammation-related molecules (TNF-α and ICAM-1) and oxidative stress indicators (4-HNE and 3-NT). Both of the low and high doses of hBMSCs alleviated the above irradiation-induced pathological changes and elevated the antioxidant enzyme expression of HO-1 and catalase in the aorta. The high dose even showed a better protective effect. In conclusion, hBMSCs provide significant protection against RIAI possibly through inhibition of aortic oxidative stress and inflammation. Therefore, hBMSCs can be used as a potential therapy to treat RIAI.


2018 ◽  
Vol 35 (1) ◽  
pp. 369-374
Author(s):  
Omayma A.R. AbouZaid ◽  
Laila A Rashed ◽  
S. M. El-Sonbaty ◽  
Aboel-Ftouh A. I

Author(s):  
Cristina Russo ◽  
Giuliana Mannino ◽  
Martina Patanè ◽  
Nunziatina Laura Parrinello ◽  
Rosalia Pellitteri ◽  
...  

AbstractThe influences of ghrelin on neural differentiation of adipose-derived mesenchymal stem cells (ASCs) were investigated in this study. The expression of typical neuronal markers, such as protein gene product 9.5 (PGP9.5) and Microtubule Associated Protein 2 (MAP2), as well as glial Fibrillary Acid Protein (GFAP) as a glial marker was evaluated in ASCs in different conditions. In particular, 2 µM ghrelin was added to control ASCs and to ASCs undergoing neural differentiation. For this purpose, ASCs were cultured in Conditioned Media obtained from Olfactory Ensheathing cells (OEC-CM) or from Schwann cells (SC-CM). Data on marker expression were gathered after 1 and 7 days of culture by fluorescence immunocytochemistry and flow cytometry. Results show that only weak effects were induced by the addition of only ghrelin. Instead, dynamic ghrelin-induced modifications were detected on the increased marker expression elicited by glial conditioned media. In fact, the combination of ghrelin and conditioned media consistently induced a further increase of PGP9.5 and MAP2 expression, especially after 7 days of treatment. The combination of ghrelin with SC-CM produced the most evident effects. Weak or no modifications were found on conditioned medium-induced GFAP increases. Observations on the ghrelin receptor indicate that its expression in control ASCs, virtually unchanged by the addition of only ghrelin, was considerably increased by CM treatment. These increases were enhanced by combining ghrelin and CM treatment, especially at 7 days. Overall, it can be assumed that ghrelin favors a neuronal rather than a glial ASC differentiation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shengchao Zhang ◽  
Jiankai Fang ◽  
Zhanhong Liu ◽  
Pengbo Hou ◽  
Lijuan Cao ◽  
...  

Abstract Background Muscle stem cells (MuSCs) are absolutely required for the formation, repair, and regeneration of skeletal muscle tissue. Increasing evidence demonstrated that tissue stem cells, especially mesenchymal stem cells (MSCs), can exert therapeutic effects on various degenerative and inflammatory disorders based on their immunoregulatory properties. Human mesenchymal stem cells (hMSCs) treated with interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) were reported to possess anti-inflammatory functions by producing TNF-stimulated gene 6 (TSG-6). However, whether human muscle stem cells (hMuSCs) also possess TSG-6 mediated anti-inflammatory functions has not been explored. Methods The ulcerative colitis mouse model was established by subjecting mice to dextran sulfate sodium (DSS) in drinking water for 7 days. hMuSCs were pretreated with IFN-γ and TNF-α for 48 h and were then transplanted intravenously at day 2 of DSS administration. Body weights were monitored daily. Indoleamine 2,3-dioxygenase (IDO) and TSG-6 in hMuSCs were knocked down with short hairpin RNA (shRNA) and small interfering RNA (siRNA), respectively. Colon tissues were collected for length measurement and histopathological examination. The serum level of IL-6 in mice was measured by enzyme-linked immunosorbent assay (ELISA). Real-time PCR and Western blot analysis were performed to evaluate gene expression. Results hMuSCs treated with inflammatory factors significantly ameliorated inflammatory bowel disease (IBD) symptoms. IDO and TSG-6 were greatly upregulated and required for the beneficial effects of hMuSCs on IBD. Mechanistically, the tryptophan metabolites, kynurenine (KYN) or kynurenic acid (KYNA) produced by IDO, augmented the expression of TSG-6 through activating their common receptor aryl hydrocarbon receptor (AHR). Conclusion Inflammatory cytokines-treated hMuSCs can alleviate DSS-induced colitis through IDO-mediated TSG-6 production.


Author(s):  
Sushmitha Sriramulu ◽  
Antara Banerjee ◽  
Ganesan Jothimani ◽  
Surajit Pathak

AbstractObjectivesWound healing is a complex process with a sequence of restoring and inhibition events such as cell proliferation, differentiation, migration as well as adhesion. Mesenchymal stem cells (MSC) derived conditioned medium (CM) has potent therapeutic functions and promotes cell proliferation, anti-oxidant, immunosuppressive, and anti-apoptotic effects. The main aim of this research is to study the role of human umbilical cord-mesenchymal stem cells (UC-MSCs) derived CM in stimulating the proliferation of human keratinocytes (HaCaT).MethodsFirstly, MSC were isolated from human umbilical cords (UC) and the cells were then cultured in proliferative medium. We prepared and collected the CM after 72 h. Morphological changes were observed after the treatment of HaCaT cells with CM. To validate the findings, proliferation rate, clonal efficiency and also gene expression studies were performed.ResultsIncreased proliferation rate was observed and confirmed with the expression of Proliferating Cell Nuclear Antigen (PCNA) after treatment with HaCaT cells. Cell-cell strap formation was also observed when HaCaT cells were treated with CM for a period of 5–6 days which was confirmed by the increased expression of Collagen Type 1 Alpha 1 chain (Col1A1).ConclusionsOur results from present study depicts that the secretory components in the CM might play a significant role by interacting with keratinocytes to promote proliferation and migration. Thus, the CM stimulates cellular proliferation, epithelialization and migration of skin cells which might be the future promising application in wound healing.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1127
Author(s):  
Juan Sendon-Lago ◽  
Lorena Garcia-del Rio ◽  
Noemi Eiro ◽  
Patricia Diaz-Rodriguez ◽  
Leandro Avila ◽  
...  

Inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), is increasingly prevalent and current therapies are not completely effective. Mesenchymal stem cells are emerging as a promising therapeutic option. Here, the effect of local hydrogel application loaded with conditioned medium (CM) from human uterine cervical stem cells (hUCESC-CM) in an experimental acute colitis mice model has been evaluated. Colitis induction was carried out in C57BL/6 mice by dissolving dextran sulfate sodium (DSS) in drinking water for nine days. Ulcers were treated by rectal administration of either mesalazine (as positive control) or a mucoadhesive and thermosensitive hydrogel loaded with hUCESC-CM (H-hUCESC-CM). Body weight changes, colon length, and histopathological analysis were evaluated. In addition, pro-inflammatory TNF-α, IL-6, and IFN-γ mRNA levels were measured by qPCR. Treatment with H-hUCESC-CM inhibited body weight loss and colon shortening and induced a significant decrease in colon mucosa degeneration, as well as TNF-α, IFN-γ, and IL-6 mRNA levels. Results indicate that H-hUCESC-CM effectively alleviated DSS-induced colitis in mice, suggesting that H-hUCESC-CM may represent an attractive cell-free therapy for local treatment of IBD.


Sign in / Sign up

Export Citation Format

Share Document