scholarly journals Production and Partial Characterization of an Alkaline Xylanase from a Novel FungusCladosporium oxysporum

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Guo-Qiang Guan ◽  
Peng-Xiang Zhao ◽  
Jin Zhao ◽  
Mei-Juan Wang ◽  
Shu-Hao Huo ◽  
...  

A new fungusCladosporium oxysporumGQ-3 producing extracellular xylanase was isolated from decaying agricultural waste and identified based on the morphology and comparison of internal transcribed spacer (ITS) rDNA gene sequence.C. oxysporumproduced maximum xylanase activity of 55.92 U/mL with wheat bran as a substrate and NH4Cl as a nitrogen source. Mg2+improvedC. oxysporumxylanase production.Partially purified xylanase exhibited maximum activity at 50°C and pH 8.0, respectively, and showed the stable activity after 2-h treatment in pH 7.0–8.5 or below 55°C. Mg2+enhanced the xylanase activity by 2% while Cu2+had the highest inhibition ratio of 57.9%. Furthermore,C. oxysporumxylanase was resistant to most of tested neutral and alkaline proteases. Our findings indicated thatCladosporium oxysporumGQ-3 was a novel xylanase producer, which could be used in the textile processes or paper/feed industries.

2019 ◽  
Vol 50 (3) ◽  
Author(s):  
Al-Badran & Al-Shamary

 Seventeen local isolates of Bacillus were isolated from soil to produce extracellular xylanase under submerged fermentation process by using xylan as carbon sole source. All isolates were subjected  to quantitative scanning to select the most efficient one. The highest activity of xylanase (2680u/ml) was obtained from isolate Bacillus sp RS1. The isolate identified by 16SrRNA gene sequence of Bacillus subtilis  ( accuracy of 99%)which was matched with sequence of Bacillus subtilis VBN25 that recorded in Genebank under the Accession Number of MG027675.1.Extracted xylan from agricultural waste by acidic method(papyrus, sun flower stalks, Ibaa Wheat type, Furat wheat type and Abo Ghraib wheat type)were used as the substrate for xylanase production from Bacillus. The results  showed that the papyrus gave the highest amount of xylan (187.6 µg/ml) as compared with that of the sun flower stalks, Ibaa Wheat type, Furat wheat type and Abo Ghraib wheat type(161.3, 161.6, 157.6, 157.2) µ g/ml respectively. The results indicated that the highest  xylanase activity was 2800 u/ml produced by Bacillus subtilus when Papyrus xylan was used.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Abhay Raj ◽  
Sharad Kumar ◽  
Sudheer Kumar Singh ◽  
Mahadeo Kumar

Providenciasp. strain X1 showing the highest xylanase activity among six bacterial isolates was isolated from saw-dust decomposing site. Strain X1 produced cellulase-free extracellular xylanase, which was higher in wheat bran medium than in xylan medium, when cultivated at pH 8.0 and 35°C. Zymogram analysis of crude preparation of enzymes obtained while growing on wheat bran and birchwood xylan revealed the presence of seven and two distinct xylanases with estimated molecular weight of 33; 35; 40; 48; 60; 75; and 95 kDa and 33 and 44 kDa, respectively. The crude xylanases were produced on wheat bran medium and showed optimum activity at pH 9.0 and 60°C. The thermotolerance studies showed activity retention of 100% and 85% at 40°C and 60°C after 30 min preincubation at pH 9.0. It was tolerant to lignin, ferulic acid, syringic acid, and guaiacol and retained 90% activity after ethanol treatment. The enzyme preparation was also tolerant to methanol and acetone and showed good activity retention in the presence of metal ions such as Fe2+, Mg2+, Zn2+, and Ca2+. The crude enzyme preparation was classified as endoxylanase based on the product pattern of xylan hydrolysis. Pretreatment of kraft pulp with crude xylanases for 3 h at 60°C led to a decrease in kappa number by 28.5%. The properties of present xylanases make them potentially useful for industrial applications.


2012 ◽  
Vol 19 ◽  
pp. 7-14
Author(s):  
SCD Sharma ◽  
MS Shovon ◽  
AKM Asaduzzaman ◽  
MG Sarowar Jahan ◽  
T Yeasmin ◽  
...  

Context: To analyze the nutritional and physicochemical parameters for the production of alkali-thermostable and cellulase free xylanase from bacteria. Objectives: The aim of this study was to isolation and identification and of alkali-thermostable and cellulase free xylanase producing bacteria from soil as well as optimization of process parameters for xylanase production. Materials and Methods: The bacterium Bacillus sp. was isolated from soil by serial dilution technique on xylan agar medium and identified by morphological and biochemical studies. The production of xylanase was carried out on xylan broth medium and xylanase activity was assayed by dinitrosalicylic acid (DNS) method. The effect of cultural parameters on the production of xylanase was determined by measuring the activity of xylanase. The effect of temperature and pH on the activity of partially purified xylanase as well as substrate specificity of xylanase were examined. Results: The maximum xylanase production (4000 U/L) by a Bacillus sp. was attained when the medium containing 0.5% wheat bran xylan and peptone at pH 8.0 and 50-55°C within 48-60 h. The partially purified xylanase was optimally active at pH 9.0 and 55°C. The xylanase showed high substrate activity towards wheat bran xylan but no activity towards cellulose, carboxymethyl cellulose and starch. Thus the enzyme was alkali-thermostable and cellulase free xylanase. Conclusion: The results obtained in this study suggest that the Bacillus sp. used is highly potential and useful for the production of cellulase free xylanase. DOI: http://dx.doi.org/10.3329/jbs.v19i0.12994 J. bio-sci. 19: 7-14, 2011


2018 ◽  
Vol 19 (2) ◽  
pp. 117
Author(s):  
Esti Utarti ◽  
S. Siswanto

Hemicellulose is one of lignocellulose waste component, so that xylanase is one of importance enzyme of lignocellulose waste biodegradation. Molds as main decomposer lignosellulose waste has enzyme activities higher than yeast and bacteria. The aim of the research is to find mold that have xylanolitic activity using lignocellulose waste as media production. The research consist of isolations and screening mols from coastal-field of watu Ulo Jember, xylanase production using lignocellulose waste and idntification of mold which has the highes xylanase activity. A total of 66 molds isolated from rice straw in coastal-field of Watu Ulo Jember. There were screened for their xylanase activity. In semiquantitatively screen on Oat Spelt Xylan plate, the result showed that 62 have xilanolytic activities. Based on clearing zone production, isolates ESW A1 (3.2), ESW A5 (3.1), ESW C 16 (3.26), ESW D4 (3.0) and ESW D15 (3.21) have xilanase activity index higher than others. Furthermore, quantitative analysis using wheat bran, rice straw and baggase in basic salt Mandel’s modification media showed that xylanase activity of isolate ESW D4 was higher on rice straw 3% as substrate production with activity 2.66 U/mL. Isolate ESW D4 identified as Aspergillus foetidus so that called as Aspergillus foetidus ESW D4. Keywords: rice straw, coastal-field, Aspergillus foetidus ESW-D


1993 ◽  
Vol 39 (12) ◽  
pp. 1162-1166 ◽  
Author(s):  
A. Blanco ◽  
F. I. J. Pastor

A Bacillus strain with xylanase activity has been isolated. Maximum xylanase production was obtained when the strain was cultured in media supplemented with birchwood xylan or rice straw; production was repressed by glucose and xylose. The optimal temperature and pH for xylanase activity were 45–50 °C and 5.5–7.5, respectively. Crude xylanase was highly stable at a wide range of pH values, retaining 100% of the activity after 24 h of incubation at 37 °C in buffer at pH 10.0. Analysis by polyacrylamide gel electrophoresis and zymogram techniques showed four xylanase activity bands with apparent molecular masses of 32, 48, 61, and 66 kDa. The most active of them (molecular mass 32 kDa) apparently corresponded to a xylanase with an isoelectric point (pI) of 9.3 in isoelectrofocusing gels developed as zymograms. Four other bands with xylanase activity were detected at pIs of 7.7, 5.6, 5.0, and 4.5. Analysis for carboxymethylcellulase activity revealed that only the band of 48 kDa and the band with a pI of 7.7 showed hydrolytic activity against the cellulosic substrate.Key words: Bacillus sp., xylanase, isolation.


2020 ◽  
Vol 14 (1) ◽  
pp. 5
Author(s):  
SIPRIYADI SIPRIYADI ◽  
ARIS TRI WAHYUDI ◽  
MAGGY THENAWIDJAYA SUHARTONO ◽  
ANJA MERYANDINI

Xylanase is an important hydrolytic enzymes with many application in several industries, but to obtain enzyme derived products is not easy. Thus, the optimization of efficient xylanases production is a great interest for biotechnological application. This study aims to determine the type of substrate, medium composition, and optimum conditions of xylanase production by S. costaricanus 45I-3. Determination of substrate type was done by growing the tested bacteria on birchwood xylan, beechwood xylan, oat spelled xylan, corn cobs xylan, and tobacco xylan substrate, meanwhile the determination of medium composition and enzyme production were done by measuring xylanase activity at various substrate concentration and replacing the carbon, nitrogen, phosphate and surfactants source. The results showed that the highest enzymatic index (EI) produced from corn cob xylan substrate at 3.60 meanwhile the second highest was beechwood xylan substrate at 2.87 EI, however this substrate is purer, thus this substrate was selected and used as xylan sources for further optimization measurement. The best xylanase activity (2.29 U/mL) obtained on eighth day after inoculation on rotary incubator at 120 rpm in 28 ºC. Arabinose as the source of carbon generate the highest activity at 3.161 U/mL meanwhile the most preferred source of phosphate is Na2HPO4 (2.37 U/mL). Both source of nitrogen i.e. nitrogen ammonium sulphate (NH4)2SO4 and yeast extract were able to produce xylanase at 2.57 and 2.36 U/mL. The addition of surfactant in production medium showed addition of SDS surfactant (0.146 U/mL) and Tween 80 (0.438 U/mL) showed a negative response by decreasing the activity. The conclusion showed that the xylanase activity was increased after optimization at various C, N, and P sources, and the use of nitrogen source (NH4)2SO4), become a more economical alternative to replacing a nitrogen source yeast extract so it can lower the production costs of xylanase enzyme.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 721
Author(s):  
Zohre Shahryari ◽  
Mohammad Fazaelipoor ◽  
Younes Ghasemi ◽  
Patrik Lennartsson ◽  
Mohammad Taherzadeh

Integrated enzyme production in the biorefinery can significantly reduce the cost of the entire process. The purpose of the present study is to evaluate the production of two hydrolyzing enzymes (amylase and xylanase) by an edible fungus used in the biorefinery, Neurospora intermedia. The enzyme production was explored through submerged fermentation of synthetic media and a wheat-based waste stream (thin stillage and wheat bran). The influence of a nitrogen source on N. intermedia was investigated and a combination of NaNO3 and yeast extract has been identified as the best nitrogen source for extracellular enzyme production. N. intermedia enzymes showed maximum activity at 65 °C and pH around 5. Under these conditions, the maximum velocity of amylase and xylanase for starch and xylan hydrolysis was found to be 3.25 U mL−1 and 14.77 U mL−1, respectively. Cultivation of N. intermedia in thin stillage and wheat bran medium resulted in relatively high amylase (8.86 ± 0.41 U mL−1, 4.68 ± 0.23) and xylanase (5.48 ± 0.21, 2.58 ± 0.07 U mL−1) production, respectively, which makes this fungus promising for enzyme production through a wheat-based biorefinery.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Abbas Akhavan Sepahy ◽  
Shokoofeh Ghazi ◽  
Maryam Akhavan Sepahy

A xylanase producer Bacillus mojavensis strain, called AG137, isolated from cotton farm (Kashan-Iran). The optimal xylanase activity reached at 55∘C & pH 9.0. Enzyme yield was studied using a medium with different agricultural wastes as inducers. Xylanase production of about 249.308 IU/mL was achieved at pH 8 and 37∘C, within 48 h submerged fermentation in enzyme production medium supplemented with 2% (w/v) oat bran as an optimum carbon source. A mixture of 1% (w/v) yeast extract and 1% (w/v) tryptone as optimum nitrogen sources, agitation speed 200 rpm, and inoculum size 2% (v/v) were the optimums for maximum production. Accordingly, xylanase yield from 194.68 IU/mL under non-optimized fermentation condition enhanced to 302.466 IU/mL in optimized condition. Screened xylanase is thermostable, presenting 70% stability at 60∘C during 30 min. Further enzyme incubation in higher temperature caused a decrease in the residual enzyme activity, yet it retained 68%–50% of its activity after 1 hour from 45∘C to 55∘C. Besides, it is stable in pH 9 and 10, maintaining over 70% of its activity for 2 h. The enzyme also could preserve 71% and 63% of its initial activity after 3 hours of pre-incubation in the same alkaline condition. Produced xylanase therefore was introduced as an alkaline-active and stable one, displaying suitable thermostability feature, confirmed by HPLC analysis. Hence, all xylanase properties highlight its promising uses in industrial scale.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 287
Author(s):  
Thi Ngoc Tran ◽  
Chien Thang Doan ◽  
San-Lang Wang

Agro-byproducts can be utilized as effective and low-cost nutrient sources for microbial fermentation to produce a variety of usable products. In this study, wheat bran powder (WBP) was found to be the most effective carbon source for xylanase production by Streptomyces thermocarboxydus TKU045. The optimal media for xylanase production was 2% (w/v) WBP, 1.50% (w/v) KNO3, 0.05% (w/v) MgSO4, and 0.10% (w/v) K2HPO4, and the optimal culture conditions were 50 mL (in a 250 mL-volume Erlenmeyer flask), initial pH 9.0, 37 °C, 125 rpm, and 48 h. Accordingly, the highest xylanase activity was 6.393 ± 0.130 U/mL, 6.9-fold higher than that from un-optimized conditions. S. thermocarboxydus TKU045 secreted at least four xylanases with the molecular weights of >180, 36, 29, and 27 kDa when cultured on the WBP-containing medium. The enzyme cocktail produced by S. thermocarboxydus TKU045 was optimally active over a broad range of temperature and pH (40–70 °C and pH 5–8, respectively) and could hydrolyze birchwood xylan to produce xylobiose as the major product. The obtained xylose oligosaccharide (XOS) were investigated for 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and the growth effect of lactic acid bacteria. Finally, the solid waste from the WBP fermentation using S. thermocarboxydus TKU045 revealed the high adsorption of Congo red, Red 7, and Methyl blue. Thus, S. thermocarboxydus TKU045 could be a potential strain to utilize wheat bran to produce xylanases for XOS preparation and dye adsorbent.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Adriana Knob ◽  
Susan Michelz Beitel ◽  
Diana Fortkamp ◽  
César Rafael Fanchini Terrasan ◽  
Alex Fernando de Almeida

In recent decades, xylanases have been used in many processing industries. This study describes the xylanase production byPenicillium glabrumusing brewer's spent grain as substrate. Additionally, this is the first work that reports the purification and characterization of a xylanase using this agroindustrial waste. Optimal production was obtained whenP. glabrumwas grown in liquid medium in pH 5.5, at 25 °C, under stationary condition for six days. The xylanase fromP. glabrumwas purified to homogeneity by a rapid and inexpensive procedure, using ammonium sulfate fractionation and molecular exclusion chromatography. SDS-PAGE analysis revealed one band with estimated molecular mass of 18.36 kDa. The optimum activity was observed at 60 °C, in pH 3.0. The enzyme was very stable at 50 °C, and high pH stability was verified from pH 2.5 to 5.0. The ion Mn2+and the reducing agentsβ-mercaptoethanol and DTT enhanced xylanase activity, while the ions Hg2+, Zn2+, and Cu2+as well as the detergent SDS were strong inhibitors of the enzyme. The use of brewer's spent grain as substrate for xylanase production cannot only add value and decrease the amount of this waste but also reduce the xylanase production cost.


Sign in / Sign up

Export Citation Format

Share Document