scholarly journals The Four-Herb Chinese Medicine Formula Tuo-Li-Xiao-Du-San Accelerates Cutaneous Wound Healing in Streptozotocin-Induced Diabetic Rats through Reducing Inflammation and Increasing Angiogenesis

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Xiao-na Zhang ◽  
Ze-jun Ma ◽  
Ying Wang ◽  
Yu-zhu Li ◽  
Bei Sun ◽  
...  

Impaired wound healing in diabetic patients is a serious complication that often leads to amputation or even death with limited effective treatments. Tuo-Li-Xiao-Du-San (TLXDS), a traditional Chinese medicine formula for refractory wounds, has been prescribed for nearly 400 years in China and shows good efficacy in promoting healing. In this study, we explored the effect of TLXDS on healing of diabetic wounds and investigated underlying mechanisms. Four weeks after intravenous injection of streptozotocin, two full-thickness excisional wounds were created with a 10 mm diameter sterile biopsy punch on the back of rats. The ethanol extract of TLXDS was given once daily by oral gavage. Wound area, histological change, inflammation, angiogenesis, and collagen synthesis were evaluated. TLXDS treatment significantly accelerated healing of diabetic rats and improved the healing quality. These effects were associated with reduced neutrophil infiltration and macrophage accumulation, enhanced angiogenesis, and increased collagen deposition. This study shows that TLXDS improves diabetes-impaired wound healing.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guodong Li ◽  
Chung-Nga Ko ◽  
Dan Li ◽  
Chao Yang ◽  
Wanhe Wang ◽  
...  

AbstractImpaired wound healing and ulcer complications are a leading cause of death in diabetic patients. In this study, we report the design and synthesis of a cyclometalated iridium(III) metal complex 1a as a stabilizer of hypoxia-inducible factor-1α (HIF-1α). In vitro biophysical and cellular analyses demonstrate that this compound binds to Von Hippel-Lindau (VHL) and inhibits the VHL–HIF-1α interaction. Furthermore, the compound accumulates HIF-1α levels in cellulo and activates HIF-1α mediated gene expression, including VEGF, GLUT1, and EPO. In in vivo mouse models, the compound significantly accelerates wound closure in both normal and diabetic mice, with a greater effect being observed in the diabetic group. We also demonstrate that HIF-1α driven genes related to wound healing (i.e. HSP-90, VEGFR-1, SDF-1, SCF, and Tie-2) are increased in the wound tissue of 1a-treated diabetic mice (including, db/db, HFD/STZ and STZ models). Our study demonstrates a small molecule stabilizer of HIF-1α as a promising therapeutic agent for wound healing, and, more importantly, validates the feasibility of treating diabetic wounds by blocking the VHL and HIF-1α interaction.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Henna Roshini Alexander ◽  
Sharifah Sakinah Syed Alwi ◽  
Latifah Saiful Yazan ◽  
Fatin Hanani Zakarial Ansar ◽  
Yong Sze Ong

Wound healing is a regulated biological event that involves several processes including infiltrating leukocyte subtypes and resident cells. Impaired wound healing is one of the major problems in diabetic patients due to the abnormal physiological changes of tissues and cells in major processes. Thymoquinone, a bioactive compound found in Nigella sativa has been demonstrated to possess antidiabetic, anti-inflammatory, and antioxidant effects. Today, the rapidly progressing nanotechnology sets a new alternative carrier to enhance and favour the speed of healing process. In order to overcome its low bioavailability, TQ is loaded into a colloidal drug carrier known as a nanostructured lipid carrier (NLC). This study aimed to determine the effect of TQ-NLC and TQ on cell proliferation and migration, mode of cell death, and the antioxidant levels in normal and diabetic cell models, 3T3 and 3T3-L1. Cytotoxicity of TQ-NLC and TQ was determined by MTT assay. The IC10 values obtained for 3T3-L1 treated with TQ-NLC and TQ for 24 hours were 4.7 ± 3.3 and 5.3 ± 0.6 μM, respectively. As for 3T3, the IC10 values obtained for TQ-NLC and TQ at 24 hours were 4.3 ± 0.17 and 3.9 ± 2.05 μM, respectively. TQ-NLC was observed to increase the number of 3T3 and 3T3-L1 healthy cells (87–95%) and gradually decrease early apoptotic cells in time- and dose-dependant manner compared with TQ. In the proliferation and migration assay, 3T3-L1 treated with TQ-NLC showed higher proliferation and migration rate (p<0.05) compared with TQ. TQ-NLC also acted as an antioxidant by reducing the ROS levels in both cells after injury at concentration as low as 3 μM. Thus, this study demonstrated that TQ-NLC has better proliferation and migration as well as antioxidant effect compared with TQ especially on 3T3-L1 which confirms its ability as a good antidiabetic and antioxidant agent.


2020 ◽  
Author(s):  
Yongfa Sun ◽  
Lili Song ◽  
Yong Zhang ◽  
Hongjun Wang ◽  
Xiao Dong

Abstract BACKGROUND: Diabetic patients suffer from impaired wound healing. Mesenchymal stem cell (MSC) therapy represents a promising approach toward improving skin wound healing through release of soluble growth factors and cytokines that stimulate new vessel formation and modulate inflammation. Whether adipose-derived MSCs (ASCs) from type 2 diabetes donors are suitable for skin damage repair remains largely unknown. METHODS: In this study, we compared the phenotype and functionality of ASCs harvested from high fat diet (HFD) and streptozotocin (STZ)-induced T2D or control mice, and assessed their abilities to promote wound healing in an excisional wound splinting mouse model with T2D. RESULTS: T2D ASCs expressed similar cellular markers as control ASCs, but secreted less hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and transforming growth factor β (TGF-β). T2D ASCs were somewhat less effective in promoting healing of the wound, as manifested by slightly reduced re-epithelialization, cutaneous appendage regeneration, and collagen III deposition in wound tissues. In vitro, T2D ASCs promoted proliferation and migration of skin fibroblasts to a comparable extent as control ASCs via suppression of inflammation and macrophage infiltration. CONCLUSIONS: From these findings, we conclude that, although ASCs from T2D mice are marginally inferior to control ASCs, they possess comparable therapeutic effects in wound healing.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiaxin Ding ◽  
Binbin Gao ◽  
Zhenhua Chen ◽  
Xifan Mei

Bacterial infection and its severe oxidative stress reaction will cause damage to skin cell mitochondria, resulting in long-lasting wound healing and great pain to patients. Thus, delayed wound healing in diabetic patients with Staphylococcus aureus infection is a principal challenge worldwide. Therefore, novel biomaterials with multifunction of bacterial membrane destruction and skin cell mitochondrial protection are urgently needed to be developed to address this challenge. In this work, novel gold cage (AuNCs) modified with epigallocatechin gallate (EGCG) were prepared to treat delayed diabetic wounds. The results showed that Au-EGCG had a high and stable photothermal conversion efficiency under near-infrared irradiation, and the scavenging rate of Au-EGCG for S. aureus could reach 95%. The production of large amounts of reactive oxygen species (ROS) leads to the disruption of bacterial membranes, inducing bacterial lysis and apoptosis. Meanwhile, Au-EGCG fused into hydrogel (Au-EGCG@H) promoted the migration and proliferation of human umbilical cord endothelial cells, reduced cellular mitochondrial damage and oxidative stress in the presence of infection, and significantly increased the basic fibroblast growth factor expression and vascular endothelial growth factor. In addition, animal studies showed that wound closure was 97.2% after 12 days of treatment, and the healing of chronic diabetic wounds was significantly accelerated. Au-EGCG nanoplatforms were successfully prepared to promote cell migration and angiogenesis in diabetic rats while removing S. aureus, reducing oxidative stress in cells, and restoring impaired mitochondrial function. Au-EGCG provides an effective, biocompatible, and multifunctional therapeutic strategy for chronic diabetic wounds.


1996 ◽  
Vol 40 (7) ◽  
pp. 1703-1710 ◽  
Author(s):  
S E Cross ◽  
M J Thompson ◽  
M S Roberts

The present study assessed the suitability of the streptozotocin-treated diabetic rat as a model for the study of diabetes-impaired wound healing. The distribution of three antibiotics, ampicillin, benzylpenicillin, and flucloxacillin, in wound and adjacent tissue sites on the abdomens and legs of normal and diabetic rats was determined 30 min after intravenous administration of a single bolus containing 50 mg of all three antibiotics per kg of body weight. Tissue/plasma ratios showed that antibiotic tissue penetration appeared to be related to protein binding. The treatment of wound sites with vasodilators (1% solution) to increase local blood flow and antibiotic delivery to the site was then determined and appeared to be more effective with endothelium-independent sodium nitroprusside than with endothelium-dependent acetylcholine in diabetic rats. These results suggest that coadministration of topical vasodilators to wound sites in neuropathic diabetic patients undergoing antibiotic therapy for infected ulcers could increase antibiotic delivery to wound tissue sites.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Nicolette N. Houreld

Impaired wound healing is a common complication associated with diabetes with complex pathophysiological underlying mechanisms and often necessitates amputation. With the advancement in laser technology, irradiation of these wounds with low-intensity laser irradiation (LILI) or phototherapy, has shown a vast improvement in wound healing. At the correct laser parameters, LILI has shown to increase migration, viability, and proliferation of diabetic cellsin vitro; there is a stimulatory effect on the mitochondria with a resulting increase in adenosine triphosphate (ATP). In addition, LILI also has an anti-inflammatory and protective effect on these cells. In light of the ever present threat of diabetic foot ulcers, infection, and amputation, new improved therapies and the fortification of wound healing research deserves better prioritization. In this review we look at the complications associated with diabetic wound healing and the effect of laser irradiation bothin vitroandin vivoin diabetic wound healing.


Author(s):  
Krishna Priya Arjunan ◽  
Gary Friedman ◽  
Alisa Morss Clyne

Angiogenesis, the growth of new blood vessels from existing vessels, plays a key role in growth, and wound healing. Insufficient vascularization contributes to impaired wound healing in diabetic patients and the elderly. Tissue engineering is limited by the inability to adequately vascularize constructs to provide nutrients to the tissue core, thus limiting the size of engineered organs.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Sandra Matabi Ayuk ◽  
Heidi Abrahamse ◽  
Nicolette Nadene Houreld

The integration of several cellular responses initiates the process of wound healing. Matrix Metalloproteinases (MMPs) play an integral role in wound healing. Their main function is degradation, by removal of damaged extracellular matrix (ECM) during the inflammatory phase, breakdown of the capillary basement membrane for angiogenesis and cell migration during the proliferation phase, and contraction and remodelling of tissue in the remodelling phase. For effective healing to occur, all wounds require a certain amount of these enzymes, which on the contrary could be very damaging at high concentrations causing excessive degradation and impaired wound healing. The imbalance in MMPs may increase the chronicity of a wound, a familiar problem seen in diabetic patients. The association of diabetes with impaired wound healing and other vascular complications is a serious public health issue. These may eventually lead to chronic foot ulcers and amputation. Low intensity laser irradiation (LILI) or photobiomodulation (PBM) is known to stimulate several wound healing processes; however, its role in matrix proteins and diabetic wound healing has not been fully investigated. This review focuses on the role of MMPs in diabetic wound healing and their interaction in PBM.


2016 ◽  
Vol 54 (11) ◽  
pp. 2732-2736 ◽  
Author(s):  
Halil Aksoy ◽  
Ali Sen ◽  
Mesut Sancar ◽  
Turgut Sekerler ◽  
Dilek Akakin ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Jingjing Zhang ◽  
Rui Zhou ◽  
Changpei Xiang ◽  
Qiang Jia ◽  
Hongwei Wu ◽  
...  

As a serious complication of diabetes, nonhealing skin ulcer leads to high mortality and disability in diabetic patients. However, limited therapy is available in managing diabetic wounds. In this study, RNA-seq technology was used to systematically investigate the effect of Huangbai (HB) liniment, a traditional Chinese medicine, on the streptozotocin- (STZ-) induced diabetic wound. HB liniment significantly accelerated the wound closure and enhanced the generation of extracellular matrix in diabetic rats, and oxidative stress was identified to play a vital role in HB-mediated wound healing. Importantly, HB liniment activated nuclear factor erythroid-derived 2-like 2 (Nrf2) and its downstream antioxidant genes (e.g., genes involved in glutathione system, thioredoxin system, and GAPDH generation as well as other antioxidant genes), which inhibited oxidative damage and apoptosis. By associating drug targets of HB liniment with Nrf2 and its downstream genes, 54 components in HB liniment were screened out, and the majority was from Cortex Phellodendri and Forsythia suspensa. Additionally, HB liniment enhanced TGF-β1 and reduced MMP9 level, accelerating wound healing in diabetes. The in vitro experiment showed HB facilitated cell proliferation and inhibited oxidative damage in high glucose-induced HaCaT cells. Our findings provided the experimental evidence for the treatment of diabetic wound with HB, clarified the potential mechanism of HB, and improved our understanding of diabetic wound healing.


Sign in / Sign up

Export Citation Format

Share Document