scholarly journals An NIR-Triggered Au Nanocage Used for Photo-Thermo Therapy of Chronic Wound in Diabetic Rats Through Bacterial Membrane Destruction and Skin Cell Mitochondrial Protection

2021 ◽  
Vol 12 ◽  
Author(s):  
Jiaxin Ding ◽  
Binbin Gao ◽  
Zhenhua Chen ◽  
Xifan Mei

Bacterial infection and its severe oxidative stress reaction will cause damage to skin cell mitochondria, resulting in long-lasting wound healing and great pain to patients. Thus, delayed wound healing in diabetic patients with Staphylococcus aureus infection is a principal challenge worldwide. Therefore, novel biomaterials with multifunction of bacterial membrane destruction and skin cell mitochondrial protection are urgently needed to be developed to address this challenge. In this work, novel gold cage (AuNCs) modified with epigallocatechin gallate (EGCG) were prepared to treat delayed diabetic wounds. The results showed that Au-EGCG had a high and stable photothermal conversion efficiency under near-infrared irradiation, and the scavenging rate of Au-EGCG for S. aureus could reach 95%. The production of large amounts of reactive oxygen species (ROS) leads to the disruption of bacterial membranes, inducing bacterial lysis and apoptosis. Meanwhile, Au-EGCG fused into hydrogel (Au-EGCG@H) promoted the migration and proliferation of human umbilical cord endothelial cells, reduced cellular mitochondrial damage and oxidative stress in the presence of infection, and significantly increased the basic fibroblast growth factor expression and vascular endothelial growth factor. In addition, animal studies showed that wound closure was 97.2% after 12 days of treatment, and the healing of chronic diabetic wounds was significantly accelerated. Au-EGCG nanoplatforms were successfully prepared to promote cell migration and angiogenesis in diabetic rats while removing S. aureus, reducing oxidative stress in cells, and restoring impaired mitochondrial function. Au-EGCG provides an effective, biocompatible, and multifunctional therapeutic strategy for chronic diabetic wounds.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1622
Author(s):  
Nabil A. Alhakamy ◽  
Giuseppe Caruso ◽  
Basma G. Eid ◽  
Usama A. Fahmy ◽  
Osama A. A. Ahmed ◽  
...  

High glucose levels in diabetic patients are implicated in delay wound healing that could lead to more serious clinical complications. The aim of the present work was to examine the formulation of ceftriaxone (CTX) and melittin (MEL) as nanoconjugate (nanocomplex)-loaded hydroxypropyl methylcellulose (HPMC) (1.5% w/v)-based hydrogel for healing of acute wounds in diabetic rats. The CTX–MEL nanoconjugate, formulated by ion-pairing at different molar ratio, was characterized for size and zeta potential and investigated by transmission electron microscopy. CTX–MEL nanoconjugate was prepared, and its preclinical efficacy evaluated in an in vivo model of acute wound. In particular, the potential ability of the innovative CTX–MEL formulation to modulate wound closure, oxidative status, inflammatory markers, and hydroxyproline was evaluated by ELISA, while the histopathological examination was obtained by using hematoxylin and eosin or Masson’s trichrome staining techniques. Quantitative real-time PCR (qRT-PCR) of the excised tissue to measure collagen, type I, alpha 1 (Col1A1) expression and immunohistochemical assessment of vascular endothelial growth factor A (VEGF-A) and transforming growth factor beta 1 (TGF-β1) were also carried out to shed some light on the mechanism of wound healing. Our results show that the CTX–MEL nanocomplex has enhanced ability to regenerate epithelium, also giving better keratinization, epidermal proliferation, and granulation tissue formation, compared to MEL, CTX, or positive control. The nanocomplex also significantly ameliorated the antioxidant status by decreasing malondialdehyde (MDA) and increasing superoxide dismutase (SOD) levels. The treatment of wounded skin with the CTX–MEL nanocomplex also showed a significant reduction in interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) pro-inflammatory cytokines combined with a substantial increase in hydroxyproline, VEFG-A, and TGF-β1 protein expression compared to individual components or negative control group. Additionally, the CTX–MEL nanocomplex showed a significant increase in mRNA expression levels of Col1A1 as compared to individual compounds. In conclusion, the ion-pairing nanocomplex of CTX–MEL represents a promising carrier that can be topically applied to improve wound healing.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1872
Author(s):  
Hamideh Afzali ◽  
Mohammad Khaksari ◽  
Sajad Jeddi ◽  
Khosrow Kashfi ◽  
Mohammad-Amin Abdollahifar ◽  
...  

Impaired skin nitric oxide production contributes to delayed wound healing in type 2 diabetes (T2D). This study aims to determine improved wound healing mechanisms by acidified nitrite (AN) in rats with T2D. Wistar rats were assigned to four subgroups: Untreated control, AN-treated control, untreated diabetes, and AN-treated diabetes. AN was applied daily from day 3 to day 28 after wounding. On days 3, 7, 14, 21, and 28, the wound levels of vascular endothelial growth factor (VEGF) were measured, and histological and stereological evaluations were performed. AN in diabetic rats increased the numerical density of basal cells (1070 ± 15.2 vs. 936.6 ± 37.5/mm3) and epidermal thickness (58.5 ± 3.5 vs. 44.3 ± 3.4 μm) (all p < 0.05); The dermis total volume and numerical density of fibroblasts at days 14, 21, and 28 were also higher (all p < 0.05). The VEGF levels were increased in the treated diabetic wounds at days 7 and 14, as was the total volume of fibrous tissue and hydroxyproline content at days 14 and 21 (all p < 0.05). AN improved diabetic wound healing by accelerating the dermis reconstruction, neovascularization, and collagen deposition.


Author(s):  
Nina Dasari ◽  
Austin Jiang ◽  
Anna Skochdopole ◽  
Jayer Chung ◽  
Edward Reece ◽  
...  

AbstractDiabetic patients can sustain wounds either as a sequelae of their disease process or postoperatively. Wound healing is a complex process that proceeds through phases of inflammation, proliferation, and remodeling. Diabetes results in several pathological changes that impair almost all of these healing processes. Diabetic wounds are often characterized by excessive inflammation and reduced angiogenesis. Due to these changes, diabetic patients are at a higher risk for postoperative wound healing complications. There is significant evidence in the literature that diabetic patients are at a higher risk for increased wound infections, wound dehiscence, and pathological scarring. Factors such as nutritional status and glycemic control also significantly influence diabetic wound outcomes. There are a variety of treatments available for addressing diabetic wounds.


Author(s):  
Bianca Campos Oliveira ◽  
Beatriz Guitton Renaud Baptista Oliveira ◽  
Gabriela Deutsch ◽  
Fernanda Soares Pessanha ◽  
Selma Rodrigues Castilho

2020 ◽  
Author(s):  
Yongfa Sun ◽  
Lili Song ◽  
Yong Zhang ◽  
Hongjun Wang ◽  
Xiao Dong

Abstract BACKGROUND: Diabetic patients suffer from impaired wound healing. Mesenchymal stem cell (MSC) therapy represents a promising approach toward improving skin wound healing through release of soluble growth factors and cytokines that stimulate new vessel formation and modulate inflammation. Whether adipose-derived MSCs (ASCs) from type 2 diabetes donors are suitable for skin damage repair remains largely unknown. METHODS: In this study, we compared the phenotype and functionality of ASCs harvested from high fat diet (HFD) and streptozotocin (STZ)-induced T2D or control mice, and assessed their abilities to promote wound healing in an excisional wound splinting mouse model with T2D. RESULTS: T2D ASCs expressed similar cellular markers as control ASCs, but secreted less hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and transforming growth factor β (TGF-β). T2D ASCs were somewhat less effective in promoting healing of the wound, as manifested by slightly reduced re-epithelialization, cutaneous appendage regeneration, and collagen III deposition in wound tissues. In vitro, T2D ASCs promoted proliferation and migration of skin fibroblasts to a comparable extent as control ASCs via suppression of inflammation and macrophage infiltration. CONCLUSIONS: From these findings, we conclude that, although ASCs from T2D mice are marginally inferior to control ASCs, they possess comparable therapeutic effects in wound healing.


Medicina ◽  
2021 ◽  
Vol 57 (10) ◽  
pp. 1129
Author(s):  
Eyal Melamed ◽  
Alexei Rovitsky ◽  
Tohar Roth ◽  
Lior Assa ◽  
Gadi Borkow

Background and Objective: Copper, a wide spectrum biocide, also plays a key role in angiogenesis and wound healing. Antibacterial wound dressings impregnated with copper oxide microparticles (COD) have been recently cleared by the U.S. FDA and other regulatory bodies for the treatment of acute and chronic wounds, including diabetic wounds. Our objective was to evaluate the capacity of COD in stimulating the healing of non-infected stagnated wounds in diabetic patients initially treated with standard of care (SOC) dressings. Materials and Methods: The trial was divided into the three following phases: 1–2 weeks of screening, during which the patients were treated with SOC dressings; 4 weeks of treatment, during which the COD was applied twice weekly; and 2 weeks of follow-up, during which the patients were again treated with SOC dressings. The wound conditions and sizes were assessed by clinical evaluation and a wound imaging artificial intelligence system. Results: Following 1 month of COD treatment, there was a clear reduction in the mean wound area (53.2%; p = 0.003), an increase in granulation tissue (43.37; p < 0.001), and a reduction in fibrins (47.8%; p = 0.002). In patients with non-weight-bearing wounds, the reduction in wound size was even more dramatic (66.9%; p < 0.001). Conclusions: The results of this study, showing a statistically significant influence of COD on wound healing of hard-to-heal wounds in diabetic patients, strongly supports the notion that copper oxide-impregnated dressings enhance wound healing directly. Further larger controlled studies should be conducted to substantiate our findings.


Author(s):  
Yuh-Huey Chao ◽  
Wan-Ting Yang ◽  
Ming-Chang Li ◽  
Fwu-Lin Yang ◽  
Ru-Ping Lee

Traditional Chinese medicine (TCM) provides alternative treatment choices for diabetic wounds. The aim of this study was to evaluate the effects of Angelica dahurica and Rheum officinale (ARE) on diabetic wounds and its underlying action mechanism. A total of 36 healthy male Sprague–Dawley rats were randomly divided into three groups: diabetes mellitus (DM) rats treated with ARE (DM-ARE), DM rats treated with 0.9% saline (DM-NS), and non-DM rats treated with 0.9% saline (NDM-NS). DM was induced by intraperitoneal administration of 40 mg/kg of streptozotocin after a 2-week high-fat diet feeding. After excisional skin wounds and treatments, the remaining wound area (RWA) in each group was measured. The RWA in the DM-NS group (69.60% ± 2.35%) was greater than that in the DM-ARE (55.70% ± 1.85%) and NDM-NS groups (52.50% ± 2.77%) on day 6. Besides, the DM-ARE group showed higher vascular endothelial growth factor (VEGF), higher inducible nitric oxide synthase (iNOs), higher [Formula: see text]-smooth muscle actin ([Formula: see text]-SMA), and lower nuclear factor kappa-light-chain-enhancer of activated B cell (NF-[Formula: see text]B) expression in the wound skin tissue. These results showed that treatment with ARE shifted the recovery pattern of diabetic rats to the pattern of nondiabetic rats, indicating that ARE may improve wound healing in diabetic conditions.


2020 ◽  
Vol 12 (10) ◽  
pp. 1215-1220
Author(s):  
Bingshuang Xue ◽  
Yi Xue ◽  
Jiaojiao Zhou ◽  
Qichao Yang

The occurrence of complications of diabetic patients not only increases the difficulty and burden of treatment but also significantly affects the health and safety of patients. Traditional therapeutic drugs are prone to drug resistance, which affects the therapeutic effect. In recent years, the application of plant-derived natural compounds in the treatment of diseases has become a hot spot in the research of diabetes drugs. Curcumin has anti-tumor, anti-inflammation, anti-oxidation and antimicrobial effects, but the mechanism of its effect on cardiomyocytes in diabetic patients is not yet clear. In this study, curcumin was prepared into nano-preparations and its mechanism of action in the process of myocardial fibrosis in diabetic rats was further explored. We found that injection of curcumin nano-suspension can increase the LVIDd and LVFS of rats, while reducing the serum CKMB, LDH, AST and cTnI levels. Further exploration found that curcumin can reduce serum TNF- α and IL-1 β levels in diabetic rats, while increasing the SOD and GSH-Px activities of myocardial tissue, and reducing MDA content. These suggests that curcumin can reduce inflammation and oxidative stress in diabetic rats. Therefore, this study believes that curcumin nano-suspension can effectively inhibit diabetic cardiomyocyte fibrosis, oxidative stress, and inflammation and protect the rat myocardium.


2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0017
Author(s):  
Jarrett D. Cain ◽  
Michelle Titunick ◽  
Patricia McLaughlin ◽  
Ian Zagon

Category: Diabetes Introduction/Purpose: Complications associated with the diabetes include increased incidence of fracture healing, delayed fracture healing, delayed osteoblasts cell replication, decreased angiogenesis, migration and/or osteoblast cell differentiation. The cellular events involved in bone healing are adversely affected by diabetes; however, can be modulated by the Opioid Growth Factor (OGF)–OGF receptor (OGFr) is an inhibitory peptide that downregulates DNA synthesis in a tissue nonspecific manner. Diabetes is associated with elevated serum levels of OGF and dysregulation of the OGFr leading to multiple complications related to healing, sensitivity, and regeneration. This study explores the presence and function of the OGF-OGFr axis in bone tissue from type 1 diabetic rats examining intact and fractured femurs during early phases of the repair process Methods: Seven-week-old Sprague Dawley rats were injected with streptozotocin (40mg/kg i.p.) to induce T1D; other rats received buffer only and served as controls. After one month, hyperglycemia rats underwent surgery to produce a fracture at the distal third of the femur. Four diabetic rats received opioid antagoinist (naltrexone) and calcium sulfate and all remaining rats received calcium sulfate with water only. X-rays were taken immediately after surgery and after rats were euthanized on post-surgery; femur and tibia were collected for protein isolation, western blot analysis along with frozen or paraffin-embedded for histological analysis Results: Immunofluorescence indicated approximately 90% increase in opioid growth factor receptor expression in diabetic femurs compared to age-matched normal femurs. Western Blotting also suggested an increase in the receptor protein in diabetic bones relative to normal bone. TRAP staining for osteoclasts was greater in control and opioid antagonist-treated diabetic fractures when compared to the number of osteoclasts in vehicle-treated diabetic fractured femurs. Safranin O stained sections revealed approximately more bone in opioid growth receptor antagonist-treated diabetic bone fractures than in vehicle-treated bone fractures Conclusion: These data support our hypothesis that expression levels of OGFr are dysregulated in the bone of diabetic patients leading to complications in bone healing. Moreover, modulation of the OGF-OGFr pathway with receptor antagonists restored some aspects of bone healing. With further study, these preliminary results support the role of the OGF-OGFr axis in treatment of diabetic bone healing. New therapies to target dysregulation of the OGF-OGFr regulatory pathway in diabetes would provide a safe and effective disease-modifying treatment for delayed bone healing.


Sign in / Sign up

Export Citation Format

Share Document