scholarly journals Biology of Beige Adipocyte and Possible Therapy for Type 2 Diabetes and Obesity

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Fernando Lizcano ◽  
Diana Vargas

All mammals own two main forms of fat. The classical white adipose tissue builds up energy in the form of triglycerides and is useful for preventing fatigue during periods of low caloric intake and the brown adipose tissue instead of inducing fat accumulation can produce energy as heat. Since adult humans possess significant amounts of active brown fat depots and their mass inversely correlates with adiposity, brown fat might play an important role in human obesity and energy homeostasis. New evidence suggests two types of thermogenic adipocytes with distinct developmental and anatomical features: classical brown adipocytes and beige adipocytes. Beige adipocyte has recently attracted special interest because of its ability to dissipate energy and the possible ability to differentiate itself from white adipocytes. Importantly, adult human brown adipocyte appears to be mainly composed of beige-like adipocytes, making this cell type an attractive therapeutic target for obesity and obesity-related diseases. Because many epigenetic changes can affect beige adipocyte differentiation, the knowledge of the circumstances that affect the development of beige adipocyte cells may be important for therapeutic strategies. In this review we discuss some recent observations arising from the great physiological capacity of these cells and their possible role as ways to treat obesity and diabetes mellitus type 2.

2019 ◽  
Vol 20 (20) ◽  
pp. 5058 ◽  
Author(s):  
Fernando Lizcano

Adipose tissue is traditionally categorized into white and brown relating to their function and morphology. The classical white adipose tissue builds up energy in the form of triglycerides and is useful for preventing fatigue during periods of low caloric intake and the brown adipose tissue more energetically active, with a greater number of mitochondria and energy production in the form of heat. Since adult humans possess significant amounts of active brown fat depots and its mass inversely correlates with adiposity, brown fat might play an important role in human obesity and energy homeostasis. New evidence suggests two types of thermogenic adipocytes with distinct developmental and anatomical features: classical brown adipocytes and beige adipocytes. Beige adipocyte has recently attracted special interest because of its ability to dissipate energy and the possible ability to differentiate themselves from white adipocytes. The presence of brown and beige adipocyte in human adults has acquired attention as a possible therapeutic intervention for metabolic diseases. Importantly, adult human brown appears to be mainly composed of beige-like adipocytes, making this cell type an attractive therapeutic target for obesity and obesity-related diseases, such as atherosclerosis, arterial hypertension and diabetes mellitus type 2. Because many epigenetics changes can affect beige adipocyte differentiation from adipose progenitor cells, the knowledge of the circumstances that affect the development of beige adipocyte cells may be important to new pathways in the treatment of metabolic diseases. New molecules have emerged as possible therapeutic targets, which through the impulse to develop beige adipocytes can be useful for clinical studies. In this review will discuss some recent observations arising from the unique physiological capacity of these cells and their possible role as ways to treat obesity and diabetes mellitus type 2.


2013 ◽  
Vol 453 (2) ◽  
pp. 167-178 ◽  
Author(s):  
Tim J. Schulz ◽  
Yu-Hua Tseng

Obesity represents a major risk factor for the development of several of our most common medical conditions, including Type 2 diabetes, dyslipidaemia, non-alcoholic fatty liver, cardiovascular disease and even some cancers. Although increased fat mass is the main feature of obesity, not all fat depots are created equal. Adipocytes found in white adipose tissue contain a single large lipid droplet and play well-known roles in energy storage. By contrast, brown adipose tissue is specialized for thermogenic energy expenditure. Owing to its significant capacity to dissipate energy and regulate triacylglycerol (triglyceride) and glucose metabolism, and its demonstrated presence in adult humans, brown fat could be a potential target for the treatment of obesity and metabolic syndrome. Undoubtedly, fundamental knowledge about the formation of brown fat and regulation of its activity is imperatively needed to make such therapeutics possible. In the present review, we integrate the recent advancements on the regulation of brown fat formation and activity by developmental and hormonal signals in relation to its metabolic function.


1985 ◽  
Vol 248 (2) ◽  
pp. R231-R235 ◽  
Author(s):  
B. J. Moore ◽  
T. Inokuchi ◽  
J. S. Stern ◽  
B. A. Horwitz

Inter- and subscapular brown adipose tissue depots were removed from nine female Osborne-Mendel rats. These lipectomized animals and nine sham-operated controls recovered from surgery for 7 days at 25 degrees C and were then placed on a highly palatable liquid diet. All animals were maintained for a 2nd wk at 25 degrees C before being switched to 8 degrees C. After 9 wk in the cold, animals were killed, and the brown adipose tissue was dissected from scapular, cervical, thoracic, perirenal, and axillary regions. Total brown fat pad mass, protein content, brown adipocyte number, citrate synthase activity, and beta-hydroxyacyl CoA dehydrogenase activity in each of the dissected brown fat depots were significantly less than those of the sham-operated controls. Thus there was incomplete metabolic compensation in the remaining brown fat depots after the removal of the scapular brown fat in the lipectomized rats. The mass and lipid content of the retroperitoneal white adipose depot were significantly increased in the lipectomized rats as was their carcass fat content (up 14%). Food intake of the lipectomized rats was slightly but significantly decreased. These data indicate that a reduction in the amount of functional brown fat is accompanied by increased body fat accretion and are thus consistent with the hypothesis that decreased brown adipose thermogenesis can lead to altered energy balance and increased white fat deposition.


2017 ◽  
Vol 6 (5) ◽  
pp. R70-R79 ◽  
Author(s):  
Florian W Kiefer

Promotion of brown adipose tissue (BAT) activity or browning of white adipose tissue has shown great potential as anti-obesity strategy in numerous preclinical models. The discovery of active BAT in humans and the recent advances in the understanding of human BAT biology and function have significantly propelled this field of research. Pharmacological stimulation of energy expenditure to counteract obesity has always been an intriguing therapeutic concept; with the identification of the specific molecular pathways of brown fat function, this idea has now become as realistic as ever. Two distinct strategies are currently being pursued; one is the activation of bone fide BAT, the other is the induction of BAT-like cells or beige adipocytes within white fat depots, a process called browning. Recent evidence suggests that both phenomena can occur in humans. Cold-induced promotion of BAT activity is strongly associated with enhanced thermogenesis and energy expenditure in humans and has beneficial effects on fat mass and glucose metabolism. Despite these encouraging results, a number of issues deserve additional attention including the distinct characteristics of human vs rodent BAT, the heterogeneity of human BAT depots or the identification of the adipocyte precursors that can give rise to thermogenic cells in human adipose tissue. In addition, many pharmaceutical compounds are being tested for their ability to promote a thermogenic program in human adipocytes. This review summarizes the current knowledge about the various cellular and molecular aspects of human BAT as well as the relevance for energy metabolism including its therapeutic potential for obesity.


Author(s):  
Fubiao Shi ◽  
Sheila Collins

Abstractβ-adrenergic receptors (βARs) are well established for conveying the signal from catecholamines to adipocytes. Acting through the second messenger cyclic adenosine monophosphate (cAMP) they stimulate lipolysis and also increase the activity of brown adipocytes and the ‘browning’ of adipocytes within white fat depots (so-called ‘brite’ or ‘beige’ adipocytes). Brown adipose tissue mitochondria are enriched with uncoupling protein 1 (UCP1), which is a regulated proton channel that allows the dissipation of chemical energy in the form of heat. The discovery of functional brown adipocytes in humans and inducible brown-like (‘beige’ or ‘brite’) adipocytes in rodents have suggested that recruitment and activation of these thermogenic adipocytes could be a promising strategy to increase energy expenditure for obesity therapy. More recently, the cardiac natriuretic peptides and their second messenger cyclic guanosine monophosphate (cGMP) have gained attention as a parallel signaling pathway in adipocytes, with some unique features. In this review, we begin with some important historical work that touches upon the regulation of brown adipocyte development and physiology. We then provide a synopsis of some recent advances in the signaling cascades from β-adrenergic agonists and natriuretic peptides to drive thermogenic gene expression in the adipocytes and how these two pathways converge at a number of unexpected points. Finally, moving from the physiologic hormonal signaling, we discuss yet another level of control downstream of these signals: the growing appreciation of the emerging roles of non-coding RNAs as important regulators of brown adipocyte formation and function. In this review, we discuss new developments in our understanding of the signaling mechanisms and factors including new secreted proteins and novel non-coding RNAs that control the function as well as the plasticity of the brown/beige adipose tissue as it responds to the energy needs and environmental conditions of the organism.


2006 ◽  
Vol 27 (3) ◽  
pp. 370-379 ◽  
Author(s):  
Cameron Rink ◽  
Sashwati Roy ◽  
Savita Khanna ◽  
Trenton Rink ◽  
Debasis Bagchi ◽  
...  

The effects of oral niacin-bound chromium (NBC) supplementation on the subcutaneous fat tissue of type 2 Lepr db obese diabetic mice were examined using high-density comprehensive mouse genome (45,101 probe sets) expression arrays. The influence of such supplementation on the plasma cardiovascular risk factors of these mice was also investigated. Supplementation of NBC had no significant effect on age-dependent weight gain in the Lepr db obese diabetic mice. However, NBC lowered total cholesterol (TC), TC-to-HDL ratio, LDL cholesterol, and triglyceride levels while increasing HDL cholesterol in the blood plasma. No effect of NBC supplementation was observed on fasting blood glucose levels. Oral glucose tolerance test revealed a significantly improved clearance of blood glucose between 1 and 2 h of glucose challenge in NBC-supplemented mice. Unbiased genome-wide interrogation demonstrated that NBC resulted in the upregulation of muscle-specific gene expression in the fat tissue. Genes encoding proteins involved in glycolysis, muscle contraction, muscle metabolism, and muscle development were specifically upregulated in response to NBC supplementation. Genes in the adipose tissue that were downregulated in response to NBC supplementation included cell death-inducing DNA fragmentation factor (CIDEA) and uncoupling protein-1, which represent key components involved in the thermogenic role of brown adipose tissue and tocopherol transfer protein, the primary carrier of α-tocopherol to adipose tissue. The observation that CIDEA-null mice are resistant to obesity and diabetes suggests that the inhibitory role of NBC on CIDEA expression was favorable. Further studies testing the molecular basis of NBC function and long-term outcomes are warranted.


Author(s):  
Miriam A. Holzman ◽  
Abigail Ryckman ◽  
Tova M. Finkelstein ◽  
Kim Landry-Truchon ◽  
Kyra A. Schindler ◽  
...  

Brown adipose tissue (BAT) plays critical thermogenic, metabolic and endocrine roles in mammals, and aberrant BAT function is associated with metabolic disorders including obesity and diabetes. The major BAT depots are clustered at the neck and forelimb levels, and arise largely within the dermomyotome of somites, from a common progenitor with skeletal muscle. However, many aspects of BAT embryonic development are not well understood.Hoxa5patterns other tissues at the cervical and brachial levels, including skeletal, neural and respiratory structures. Here, we show thatHoxa5also positively regulates BAT development, while negatively regulating formation of epaxial skeletal muscle. HOXA5 protein is expressed in embryonic preadipocytes and adipocytes as early as embryonic day 12.5.Hoxa5null mutant embryos and rare, surviving adults show subtly reduced iBAT and sBAT formation, as well as aberrant marker expression, lower adipocyte density and altered lipid droplet morphology. Conversely, the epaxial muscles that arise from a common dermomyotome progenitor are expanded inHoxa5mutants. Conditional deletion ofHoxa5withMyf5/Crecan reproduce both BAT and epaxial muscle phenotypes, indicating that HOXA5 is necessary withinMyf5-positive cells for proper BAT and epaxial muscle development. However, recombinase-based lineage tracing shows thatHoxa5does not act cell-autonomously to repress skeletal muscle fate. Interestingly,Hoxa5-dependent regulation of adipose-associated transcripts is conserved in lung and diaphragm, suggesting a shared molecular role forHoxa5in multiple tissues. Together, these findings establish a role forHoxa5in embryonic BAT development.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1482
Author(s):  
Ahmad Agil ◽  
Miguel Navarro-Alarcon ◽  
Fatma Abo Zakaib Ali ◽  
Ashraf Albrakati ◽  
Diego Salagre ◽  
...  

Developing novel drugs/targets remains a major effort toward controlling obesity-related type 2 diabetes (diabesity). Melatonin controls obesity and improves glucose homeostasis in rodents, mainly via the thermogenic effects of increasing the amount of brown adipose tissue (BAT) and increases in mitochondrial mass, amount of UCP1 protein, and thermogenic capacity. Importantly, mitochondria are widely known as a therapeutic target of melatonin; however, direct evidence of melatonin on the function of mitochondria from BAT and the mechanistic pathways underlying these effects remains lacking. This study investigated the effects of melatonin on mitochondrial functions in BAT of Zücker diabetic fatty (ZDF) rats, which are considered a model of obesity-related type 2 diabetes mellitus (T2DM). At five weeks of age, Zücker lean (ZL) and ZDF rats were subdivided into two groups, consisting of control and treated with oral melatonin for six weeks. Mitochondria were isolated from BAT of animals from both groups, using subcellular fractionation techniques, followed by measurement of several mitochondrial parameters, including respiratory control ratio (RCR), phosphorylation coefficient (ADP/O ratio), ATP production, level of mitochondrial nitrites, superoxide dismutase activity, and alteration in the mitochondrial permeability transition pore (mPTP). Interestingly, melatonin increased RCR in mitochondria from brown fat of both ZL and ZDF rats through the reduction of the proton leak component of respiration (state 4). In addition, melatonin improved the ADP/O ratio in obese rats and augmented ATP production in lean rats. Further, melatonin reduced mitochondrial nitrosative and oxidative status by decreasing nitrite levels and increasing superoxide dismutase activity in both groups, as well as inhibited mPTP in mitochondria isolated from brown fat. Taken together, the present data revealed that chronic oral administration of melatonin improved mitochondrial respiration in brown adipocytes, while decreasing oxidative and nitrosative stress and susceptibility of adipocytes to apoptosis in ZDF rats, suggesting a beneficial use in the treatment of diabesity. Further research regarding the molecular mechanisms underlying the effects of melatonin on diabesity is warranted.


Epigenomes ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 3
Author(s):  
Ravikanth Nanduri

Adipocytes play an essential role in maintaining energy homeostasis in mammals. The primary function of white adipose tissue (WAT) is to store energy; for brown adipose tissue (BAT), primary function is to release fats in the form of heat. Dysfunctional or excess WAT can induce metabolic disorders such as dyslipidemia, obesity, and diabetes. Preadipocytes or adipocytes from WAT possess sufficient plasticity as they can transdifferentiate into brown-like beige adipocytes. Studies in both humans and rodents showed that brown and beige adipocytes could improve metabolic health and protect from metabolic disorders. Brown fat requires activation via exposure to cold or β-adrenergic receptor (β-AR) agonists to protect from hypothermia. Considering the fact that the usage of β-AR agonists is still in question with their associated side effects, selective induction of WAT browning is therapeutically important instead of activating of BAT. Hence, a better understanding of the molecular mechanisms governing white adipocyte browning is vital. At the same time, it is also essential to understand the factors that define white adipocyte identity and inhibit white adipocyte browning. This literature review is a comprehensive and focused update on the epigenetic regulators crucial for differentiation and browning of white adipocytes.


1994 ◽  
Vol 302 (3) ◽  
pp. 695-700 ◽  
Author(s):  
C Manchado ◽  
P Yubero ◽  
O Viñas ◽  
R Iglesias ◽  
F Villarroya ◽  
...  

CCAAT/enhancer-binding protein (C/EBP) alpha mRNA and its protein products C/EBP alpha and 30 kDa C/EBP alpha are expressed in rat brown-adipose tissue. Results also demonstrate the expression of C/EBP beta mRNA and its protein products C/EBP beta and liver inhibitory protein (LIP) in the tissue. The abundance of C/EBP alpha and C/EBP beta proteins in adult brown fat is similar to that found in adult liver. However, the expression of C/EBP alpha and C/EBP beta is specifically regulated in brown fat during development. C/EBP alpha, 30 kDa C/EBP alpha, C/EBP beta and LIP content is several-fold higher in fetal brown fat than in the adult tissue, or liver at any stage of development. Peak values are attained in late fetal life, in concurrence with the onset of transcription of the uncoupling protein (UCP) gene, the molecular marker of terminal brown-adipocyte differentiation. When adult rats are exposed to a cold environment, which is a physiological stimulus of brown-adipose tissue hyperplasia and UCP gene expression, a specific rise in C/EBP beta expression with respect to C/EBP alpha, 30 kDa C/EBP alpha and LIP is observed. Present data suggest that the C/EBP family of transcription factors has an important role in the development and terminal differentiation of brown-adipose tissue.


Sign in / Sign up

Export Citation Format

Share Document