scholarly journals New Directions in 3D Medical Modeling: 3D-Printing Anatomy and Functions in Neurosurgical Planning

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Paolo Gargiulo ◽  
Íris Árnadóttir ◽  
Magnús Gíslason ◽  
Kyle Edmunds ◽  
Ingvar Ólafsson

This paper illustrates the feasibility and utility of combining cranial anatomy and brain function on the same 3D-printed model, as evidenced by a neurosurgical planning case study of a 29-year-old female patient with a low-grade frontal-lobe glioma. We herein report the rapid prototyping methodology utilized in conjunction with surgical navigation to prepare and plan a complex neurosurgery. The method introduced here combines CT and MRI images with DTI tractography, while using various image segmentation protocols to 3D model the skull base, tumor, and five eloquent fiber tracts. This 3D model is rapid-prototyped and coregistered with patient images and a reported surgical navigation system, establishing a clear link between the printed model and surgical navigation. This methodology highlights the potential for advanced neurosurgical preparation, which can begin before the patient enters the operation theatre. Moreover, the work presented here demonstrates the workflow developed at the National University Hospital of Iceland, Landspitali, focusing on the processes of anatomy segmentation, fiber tract extrapolation, MRI/CT registration, and 3D printing. Furthermore, we present a qualitative and quantitative assessment for fiber tract generation in a case study where these processes are applied in the preparation of brain tumor resection surgery.

2020 ◽  
Vol 26 (7) ◽  
pp. 1217-1225
Author(s):  
Ranjeet Agarwala ◽  
Carlos J. Anciano ◽  
Joshua Stevens ◽  
Robert Allen Chin ◽  
Preston Sparks

Purpose The purpose of the paper was to present a specific case study of how 3D printing was introduced in the chest wall construction process of a specific patient with unique medical condition. A life-size 3D model of the patient’s chest wall was 3D printed for pre-surgical planning. The intent was to eliminate the need for operative exposure to map the pathological area. The model was used for preoperative visualization and formation of a 1-mm thick titanium plate implant, which was placed in the patient during chest wall reconstructive surgery. The purpose of the surgery was to relive debilitating chronic pain due to right scapular entrapment. Design/methodology/approach The patient was born with a twisted spine. Over time, it progressed to severe and debilitating scoliosis, which required the use of a thoracic brace. Computerized tomography (CT) data were converted to a 3D printed model. The model was used to size and form a 1-mm thick titanium plate implant. It was also used to determine the ideal location for placement of the plate during thoracotomy preoperatively. Findings The surgery, aided by the model, was successful and resulted in a significantly smaller incision. The techniques reduced invasiveness and enabled the doctors to conduct the procedure efficiently and decreased surgery time. The patient experienced relief of the chronic debilitating pain and no longer need the thoracic brace. Originality/value The 3D model facilitated pre-operative planning and modeling of the implant. It also enabled accurate incision locations of the thoracotomy site and placement of the implant. Although chest wall reconstruction surgeries have been undertaken, this paper documents a specific case study of chest wall construction fora specific patient with unique pathological conditions.


2020 ◽  
Vol 15 (12) ◽  
pp. 2027-2039
Author(s):  
Javier A. Luzon ◽  
Bojan V. Stimec ◽  
Arne O. Bakka ◽  
Bjørn Edwin ◽  
Dejan Ignjatovic

Abstract Purpose Mixed reality (MR) is being evaluated as a visual tool for surgical navigation. Current literature presents unclear results on intraoperative accuracy using the Microsoft HoloLens 1®. This study aims to assess the impact of the surgeon’s sightline in an inside-out marker-based MR navigation system for open surgery. Methods Surgeons at Akershus University Hospital tested this system. A custom-made phantom was used, containing 18 wire target crosses within its inner walls. A CT scan was obtained in order to segment all wire targets into a single 3D-model (hologram). An in-house software application (CTrue), developed for the Microsoft HoloLens 1, uploaded 3D-models and automatically registered the 3D-model with the phantom. Based on the surgeon’s sightline while registering and targeting (free sightline /F/or a strictly perpendicular sightline /P/), 4 scenarios were developed (FF-PF-FP-PP). Target error distance (TED) was obtained in three different working axes-(XYZ). Results Six surgeons (5 males, age 29–62) were enrolled. A total of 864 measurements were collected in 4 scenarios, twice. Scenario PP showed the smallest TED in XYZ-axes mean = 2.98 mm ± SD 1.33; 2.28 mm ± SD 1.45; 2.78 mm ± SD 1.91, respectively. Scenario FF showed the largest TED in XYZ-axes with mean = 10.03 mm ± SD 3.19; 6.36 mm ± SD 3.36; 16.11 mm ± SD 8.91, respectively. Multiple comparison tests, grouped in scenarios and axes, showed that the majority of scenario comparisons had significantly different TED values (p < 0.05). Y-axis always presented the smallest TED regardless of scenario tested. Conclusion A strictly perpendicular working sightline in relation to the 3D-model achieves the best accuracy results. Shortcomings in this technology, as an intraoperative visual cue, can be overcome by sightline correction. Incidentally, this is the preferred working angle for open surgery.


2020 ◽  
Vol 10 (24) ◽  
pp. 8984
Author(s):  
Rafael Moreta-Martinez ◽  
José Antonio Calvo-Haro ◽  
Rubén Pérez-Mañanes ◽  
Mónica García-Sevilla ◽  
Lydia Mediavilla-Santos ◽  
...  

Surgical navigation techniques have shown potential benefits in orthopedic oncologic surgery. However, the translation of these results to acral tumor resection surgeries is challenging due to the large number of joints with complex movements of the affected areas (located in distal extremities). This study proposes a surgical workflow that combines an intraoperative open-source navigation software, based on a multi-camera tracking, with desktop three-dimensional (3D) printing for accurate navigation of these tumors. Desktop 3D printing was used to fabricate patient-specific 3D printed molds to ensure that the distal extremity is in the same position both in preoperative images and during image-guided surgery (IGS). The feasibility of the proposed workflow was evaluated in two clinical cases (soft-tissue sarcomas in hand and foot). The validation involved deformation analysis of the 3D-printed mold after sterilization, accuracy of the system in patient-specific 3D-printed phantoms, and feasibility of the workflow during the surgical intervention. The sterilization process did not lead to significant deformations of the mold (mean error below 0.20 mm). The overall accuracy of the system was 1.88 mm evaluated on the phantoms. IGS guidance was feasible during both surgeries, allowing surgeons to verify enough margin during tumor resection. The results obtained have demonstrated the viability of combining open-source navigation and desktop 3D printing for acral tumor surgeries. The suggested framework can be easily personalized to any patient and could be adapted to other surgical scenarios.


2019 ◽  
Vol 47 (11) ◽  
pp. 5873-5882
Author(s):  
Linglong Deng ◽  
Xing Zhao ◽  
Chi Wei ◽  
Wenqiang Qu ◽  
Li Yu ◽  
...  

Chondrosarcoma is characterized by the presence of histologically aggressive behavior, and commonly involves the scapula. Currently, limb salvage surgery is the recommended surgical treatment. Owing to the irregularity of the tumor, the suitability of an implant after tumor resection is a challenge for surgeons. Three-dimensional (3D) printing technology has the potential to make personalized limb salvage surgery a reality. We report the case of a 53-year-old man who was diagnosed with chondrosarcoma of the scapula. Considering the low-grade malignancy and lack of invasion of the glenoid, we agreed upon segmental scapula replacement as the treatment protocol. Nevertheless, reconstruction of the irregular bony defect remaining after tumor resection can be complicated. Therefore, a personalized prosthesis and navigation template corresponding to tumor was designed with 3D printing technique, and tumor resection, prosthesis implantation, and rotator cuff reconstruction were completed. The affected shoulder achieved satisfactory function during a 32-month follow-up with no tumor recurrence. 3D printing technique can help implement the individualized design of the implant and accurate reconstruction after tumor resection, simplify complicated operations, improve operational efficiency, and allow early functional recovery.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Hongwei Wu ◽  
Shuo Yang ◽  
Jianfan Liu ◽  
Linqin Li ◽  
Yi Luo ◽  
...  

Abstract Background Surgical resection and reconstruction for low-grade bone sarcoma in the metaphysis of the distal femur remain challenging. We hypothesized that 3D printing osteotomy guide plate could assist to accurately resect the tumor lesion and save the joint function. Methods From January 2017 to August 2019, five patients diagnosed with low-grade bone sarcoma in the metaphysis of the distal femur were treated with hemicortical resection using 3D printing guide plate. Autologous bone graft was inactivated in a high-temperature water bath and re-implanted in situ fixed with plate and screw. Patients were followed up from 17 to 33 months. The Musculoskeletal Tumor Society Score was used to evaluate the joint function. X-ray was used to evaluate the bone union. Results One patient was paracorticular osteosarcoma, and four cases had highly differentiated chondrosarcoma. All cases were involved in the metaphysis of the distal femur. Patients were followed up from 13 to 33 months, with an average of 23.6 months. There was neither post-operation infection, internal fixation loosening, nor fracture occurrence in any of the patients. The Musculoskeletal Tumor Society Score averaged at 28.1, while the International Society of Limb Salvage imaging score examination averaged 89.8%. Conclusions Here, we demonstrate that the 3D printing osteotomy guide plate-assisted hemicortical bone resection is a beneficial strategy to effectively resect the primary low-grade malignant bone tumors in the metaphysis of the distal femur and retained satisfied joint function.


Skull Base ◽  
2011 ◽  
Vol 21 (S 01) ◽  
Author(s):  
Nancy McLaughlin ◽  
Daniel Kelly ◽  
Kiarash Shahlaie ◽  
Leo F. Ditzel Filho ◽  
Daniel Prevedello ◽  
...  

2021 ◽  
Vol 22 (16) ◽  
pp. 8479
Author(s):  
Tilman L. R. Vogelsang ◽  
Aurelia Vattai ◽  
Elisa Schmoeckel ◽  
Till Kaltofen ◽  
Anca Chelariu-Raicu ◽  
...  

Trace amine-associated receptor 1 (TAAR1) is a Gαs- protein coupled receptor that plays an important role in the regulation of the immune system and neurotransmission in the CNS. In ovarian cancer cell lines, stimulation of TAAR1 via 3-iodothyronamine (T1AM) reduces cell viability and induces cell death and DNA damage. Aim of this study was to evaluate the prognostic value of TAAR1 on overall survival of ovarian carcinoma patients and the correlation of TAAR1 expression with clinical parameters. Ovarian cancer tissue of n = 156 patients who were diagnosed with epithelial ovarian cancer (serous, n = 110 (high-grade, n = 80; low-grade, n = 24; unknown, n = 6); clear cell, n = 12; endometrioid, n = 21; mucinous, n = 13), and who underwent surgery at the Department of Obstetrics and Gynecology, University Hospital of the Ludwig-Maximilians University Munich, Germany between 1990 and 2002, were analyzed. The tissue was stained immunohistochemically with anti-TAAR1 and evaluated with the semiquantitative immunoreactive score (IRS). TAAR1 expression was correlated with grading, FIGO and TNM-classification, and analyzed via the Spearman’s rank correlation coefficient. Further statistical analysis was obtained using nonparametric Kruskal-Wallis rank-sum test and Mann-Whitney-U-test. This study shows that high TAAR1 expression is a positive prognosticator for overall survival in ovarian cancer patients and is significantly enhanced in low-grade serous carcinomas compared to high-grade serous carcinomas. The influence of TAAR1 as a positive prognosticator on overall survival indicates a potential prognostic relevance of signal transduction of thyroid hormone derivatives in epithelial ovarian cancer. Further studies are required to evaluate TAAR1 and its role in the development of ovarian cancer.


2021 ◽  
pp. 1-7
Author(s):  
Marko Jug

<b><i>Introduction:</i></b> In the case of tumor resection in the upper cervical spine, a multilevel laminectomy with instrumented fixation is required to prevent kyphotic deformity and myelopathy. Nevertheless, instrumentation of the cervical spine in children under the age of 8 years is challenging due to anatomical considerations and unavailability of specific instrumentation. <b><i>Case Presentation:</i></b> We present a case of 3D-printed model-assisted cervical spine instrumentation in a 4-year-old child with post-laminectomy kyphotic decompensation of the cervical spine and spinal cord injury 1 year after medulloblastoma metastasis resection in the upper cervical spine. Due to unavailability of specific instrumentation, 3D virtual planning was used to assess and plan posterior cervical fixation. Fixation with 3.5 mm lateral mass and isthmic screws was suggested and the feasibility of fixation was confirmed “in vitro” in a 3D-printed model preoperatively to reduce the possibility of intraoperative implant-spine mismatch. Intraoperative conditions completely resembled the preoperative plan and 3.5 mm polyaxial screws were successfully used as planned. Postoperatively the child made a complete neurological recovery and 2 years after the instrumented fusion is still disease free with no signs of spinal decompensation. <b><i>Discussion/Conclusion:</i></b> Our case shows that posterior cervical fixation with the conventional screw-rod technique in a 4-year-old child is feasible, but we suggest that suitability and positioning of the chosen implants are preoperatively assessed in a printed 3D model. In addition, a printed 3D model offers the possibility to better visualize and sense spinal anatomy “in vivo,” thereby helping screw placement and reducing the chance for intraoperative complications, especially in the absence of intraoperative spinal navigation.


Sign in / Sign up

Export Citation Format

Share Document