scholarly journals Oxidative Stress in Patients Undergoing Peritoneal Dialysis: A Current Review of the Literature

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Vassilios Liakopoulos ◽  
Stefanos Roumeliotis ◽  
Xenia Gorny ◽  
Theodoros Eleftheriadis ◽  
Peter R. Mertens

Peritoneal dialysis (PD) patients manifest excessive oxidative stress (OS) compared to the general population and predialysis chronic kidney disease patients, mainly due to the composition of the PD solution (high-glucose content, low pH, elevated osmolality, increased lactate concentration and glucose degradation products). However, PD could be considered a more biocompatible form of dialysis compared to hemodialysis (HD), since several studies showed that the latter results in an excess accumulation of oxidative products and loss of antioxidants. OS in PD is tightly linked with chronic inflammation, atherogenesis, peritoneal fibrosis, and loss of residual renal function. Although exogenous supplementation of antioxidants, such as vitamins E and C, N-acetylcysteine, and carotenoids, in some cases showed potential beneficial effects in PD patients, relevant recommendations have not been yet adopted in everyday clinical practice.

2009 ◽  
Vol 29 (2_suppl) ◽  
pp. 202-205 ◽  
Author(s):  
Devrim Bozkurt ◽  
Ender Hur ◽  
Burcu Ulkuden ◽  
Murat Sezak ◽  
Hasim Nar ◽  
...  

Long-term use of the peritoneum as a dialysis membrane results in progressive irreversible dysfunction, described as peritoneal fibrosis. Oxidative stress during peritoneal dialysis has been established in many studies. Generation of reactive oxygen species (ROS) by conventional peritoneal dialysis solutions, regardless of whether produced by high glucose, angiotensin II, or glucose degradation products may be responsible for progressive membrane dysfunction. The well-known antioxidant molecule N-acetylcysteine (NAC) is capable of direct scavenging of ROS. The aim of the present study was to investigate the effect of NAC therapy on both progression and regression of encapsulating peritoneal sclerosis (EPS). We divided 49 nonuremic Wistar albino rats into four groups: Control group—2 mL isotonic saline intraperitoneally (IP) daily for 3 weeks; CG group—2 mL/200 g 0.1% chlorhexidine gluconate (CG) and 15% ethanol dissolved in saline injected IP daily for a total of 3 weeks; Resting group—CG (weeks 1 – 3), plus peritoneal resting (weeks 4 – 6); NAC-R group—CG (weeks 1 – 3), plus 2 g/L NAC (weeks 4 – 6). At the end of the experiment, all rats underwent a 1-hour peritoneal equilibration test with 25 mL 3.86% PD solution. Dialysate-to-plasma ratio (D/P) urea, dialysate white blood cell count (per cubic milliliter), ultrafiltration (UF) volume, and morphology changes of parietal peritoneum were examined. The CG group progressed to encapsulating peritoneal sclerosis, characterized by loss of UF, increased peritoneal thickness, inflammation, and ultimately, development of fibrosis. Resting produced advantages only in dialysate cell count; with regard to vascularity and dialysate cell count, NAC was more effective than was peritoneal rest. Interestingly, we observed no beneficial effects of NAC on fibrosis. That finding may be a result of our experimental severe peritoneal injury model. However, decreased inflammation and vascularity with NAC therapy were promising results in regard to membrane protection.


1993 ◽  
Vol 3 (8) ◽  
pp. 1508-1515
Author(s):  
T Liberek ◽  
N Topley ◽  
A Jörres ◽  
G A Coles ◽  
G M Gahl ◽  
...  

Solutions were formulated to examine, independently, the roles of osmolality and glucose in the reduction of viability and inhibition of phagocyte function by dextrose-containing peritoneal dialysis fluids. The exposure of neutrophils (polymorphonuclear leukocytes) to test fluids containing > or = 2.7% (wt/vol) glucose resulted in significant cytotoxicity as assessed by the release of lactate dehydrogenase above control values (7.12 +/- 2.65%). At the highest concentration of glucose (4.5%), lactate dehydrogenase release was 15.83 +/- 0.49% (P < 0.05). These effects were directly related to the presence of D-glucose in the test fluids. In contrast, phagocytosis and the release of leukotriene B4 from PMN stimulated with serum-treated zymosan were significantly inhibited in an osmolality-, but not glucose-, dependent manner. The inhibition of tumor necrosis factor alpha and interleukin-6 release from mononuclear leukocytes was inhibited by a combination of osmolality and monosaccharide concentration. Under the same conditions, PMN respiratory burst activation remained unaffected irrespective of glucose concentration or fluid osmolality. These data indicate that, in addition to the low pH of peritoneal dialysis fluid and its high lactate concentration, its glucose content (either directly or as a consequence of the resulting hyperosmolality of the fluid) inhibits cell functional parameters. These findings suggest clinically significant inhibition of host defense mechanisms because, in high-glucose dialysis fluids, osmolality does not reach physiologic values, even during extended intraperitoneal dwell periods.


2012 ◽  
Vol 32 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Caatje Y. le Poole ◽  
Frans J. van Ittersum ◽  
Rob M. Valentijn ◽  
Tom Teerlink ◽  
Bengt Lindholm ◽  
...  

BackgroundStandard peritoneal dialysis (PD) solutions contain high levels of glucose and glucose degradation products (GDPs), both contributing to the formation of advanced glycation end products (AGEs). We studied the contribution to plasma GDP and AGE levels of 2 PD regimens that differ in glucose and GDP loads: high load [standard PD (sPD) using 4 glucose-lactate exchanges] and low load [1 amino acid exchange, 1 icodextrin exchange, and 2 glucose-bicarbonate/lactate exchanges (“NEPP”)].MethodsIn a prospective crossover study (2 periods of 24 weeks), new continuous ambulatory PD patients were randomized to NEPP-sPD ( n = 23) or to sPD-NEPP ( n = 27).ResultsAfter the start of PD, absolute increases were observed in plasma levels of 3-deoxyglucosone (3-DG, 220.4 nmol/L, p < 0.0001) and in Nε-(carboxymethyl) lysine (CML) in plasma proteins (0.02 μmol/L CML per 1 mol/L lysine, p < 0.0001). During the first 6 weeks, 3-DG tended to increase more with sPD treatment (p = 0.08), and CML, with NEPP treatment (p = 0.002). In both groups, Nε-(carboxyethyl)lysine (CEL) in plasma proteins declined significantly with the start of PD. Treatment with NEPP resulted in higher levels of methylglyoxal (MGO) and lower levels of 3-DG and CEL. Pentosidine in the albumin fraction tended to increase less during NEPP treatment.ConclusionsA low glucose and GDP PD regimen (NEPP) resulted in plasma levels of 3-DG and CEL that were lower than those with a glucose-based sPD regimen. Starting PD with NEPP was associated with a steeper increase in CML, and continuing treatment with NEPP resulted in higher MGO levels.


2000 ◽  
Vol 20 (5_suppl) ◽  
pp. 19-22 ◽  
Author(s):  
Achim Jörres ◽  
Thorsten O. Bender ◽  
Janusz Witowski

Conventional heat-sterilized, glucose-based peritoneal dialysis (PD) fluids contain significant amounts of glucose degradation products (GDPs) such as aldehydes and dicarbonyl compounds (glyoxal, methylglyoxal). These GDPs have been shown to impair cell functions in various in vitro experimental models. In peritoneal mesothelial cells, GDPs dose-dependently inhibit cell proliferation and mediator synthesis. In addition, some GDPs potently promote generation of advanced glycation end-products (AGEs). Immunohistochemistry finds AGEs in the peritoneal membrane of chronic continuous ambulatory peritoneal dialysis (CAPD) patients, suggesting that peritoneal AGE accumulation may be involved in chronic peritoneal fibrosis. The formation of GDPs might be prevented by filter-sterilization of PD fluids. Another option is to separate the glucose and the buffer system in dual-chambered or multi-chambered containers. In these systems, the glucose is kept in a separate compartment at high concentration and very low pH—both conditions being known to minimize the degree of glucose decomposition during autoclaving. Initial experimental evidence suggests that these novel, multi-chambered fluids significantly improve in vitro biocompatibility; however, the clinical relevance of these results remains to be established in clinical trials.


2020 ◽  
Vol 21 (16) ◽  
pp. 5824
Author(s):  
Raquel Díaz ◽  
Pilar Sandoval ◽  
Raul R. Rodrigues-Diez ◽  
Gloria del Peso ◽  
José A Jiménez-Heffernan ◽  
...  

Peritoneal hyalinizing vasculopathy (PHV) represents the cornerstone of long-term peritoneal dialysis (PD), and especially characterizes patients associated with encapsulating peritoneal sclerosis. However, the mechanisms of PHV development remain unknown. A cross sectional study was performed in 100 non-selected peritoneal biopsies of PD patients. Clinical data were collected and lesions were evaluated by immunohistochemistry. In selected biopsies a microRNA (miRNA)-sequencing analysis was performed. Only fifteen patients (15%) showed PHV at different degrees. PHV prevalence was significantly lower among patients using PD fluids containing low glucose degradation products (GDP) (5.9% vs. 24.5%), angiotensin converting enzyme inhibitors (ACEIs) (7.5% vs. 23.4%), statins (6.5% vs. 22.6%) or presenting residual renal function, suggesting the existence of several PHV protective factors. Peritoneal biopsies from PHV samples showed loss of endothelial markers and induction of mesenchymal proteins, associated with collagen IV accumulation and wide reduplication of the basement membrane. Moreover, co-expression of endothelial and mesenchymal markers, as well as TGF-β1/Smad3 signaling activation were found in PHV biopsies. These findings suggest that an endothelial-to-mesenchymal transition (EndMT) process was taking place. Additionally, significantly higher levels of miR-7641 were observed in severe PHV compared to non-PHV peritoneal biopsies. Peritoneal damage by GDPs induce miRNA deregulation and an EndMT process in submesothelial vessels, which could contribute to collagen IV accumulation and PHV.


2016 ◽  
Vol 36 (3) ◽  
pp. 257-261 ◽  
Author(s):  
Monika Lichodziejewska-Niemierko ◽  
Michał Chmielewski ◽  
Maria Dudziak ◽  
Alicja Ryta ◽  
Bolesław Rutkowski

Background Biocompatible fluids for peritoneal dialysis (PD) have been introduced to improve dialysis and patient outcome in end-stage renal disease. However, their impact on hydration status (HS), residual renal function (RRF), and dialysis adequacy has been a matter of debate. The aim of the study was to evaluate the influence of a biocompatible dialysis fluid on the HS of prevalent PD patients. Methods The study population consisted of 18 prevalent PD subjects, treated with standard dialysis fluids. At baseline, 9 patients were switched to a biocompatible solution, low in glucose degradation products (GDPs) (Balance; Fresenius Medical Care, Bad Homburg, Germany). Hydration status was assessed through clinical evaluation, laboratory parameters, echocardiography, and bioimpedance spectroscopy over a 24-month observation period. Results During the study period, urine volume decreased similarly in both groups. At the end of the evaluation, there were also no differences in clinical (body weight, edema, blood pressure), laboratory (N-terminal pro-brain natriuretic peptide, NTproBNP), or echocardiography determinants of HS. However, dialysis ultra-filtration decreased in the low-GDP group and, at the end of the study, equaled 929 ± 404 mL, compared with 1,317 ± 363 mL in the standard-fluid subjects ( p = 0.06). Hydration status assessed by bioimpedance spectroscopy was +3.64 ± 2.08 L in the low-GDP patients and +1.47 ± 1.61 L in the controls ( p = 0.03). Conclusions The use of a low-GDP biocompatible dialysis fluid was associated with a tendency to overhydration, probably due to diminished ultrafiltration in prevalent PD patients.


2013 ◽  
Vol 33 (3) ◽  
pp. 242-251 ◽  
Author(s):  
Kunio Kawanishi ◽  
Kazuho Honda ◽  
Misao Tsukada ◽  
Hideaki Oda ◽  
Kosaku Nitta

BackgroundThe effects of novel biocompatible peritoneal dialysis (PD) solutions on human peritoneal membrane pathology have yet to be determined. Quantitative evaluation of human peritoneal biopsy specimens may reveal the effects of the new solutions on peritoneal membrane pathology.MethodsPeritoneal specimens from 24 PD patients being treated with either acidic solution containing high-glucose degradation products [GDPs ( n = 12)] or neutral solution with low GDPs ( n = 12) were investigated at the end of PD. As controls, pre-PD peritoneal specimens, obtained from 13 patients at PD catheter insertion, were also investigated. The extent of peritoneal fibrosis, vascular sclerosis, and advanced glycation end-product (AGE) accumulation were evaluated by quantitative or semi- quantitative methods. The average densities of CD31-positive vessels and podoplanin-positive lymphatic vessels were also determined.ResultsPeritoneal membrane fibrosis, vascular sclerosis, and AGE accumulation were significantly suppressed in the neutral group compared with the acidic group. The neutral group also showed lower peritoneal equilibration test scores and preserved ultrafiltration volume. The density of blood capillaries, but not of lymphatic capillaries, was significantly increased in the neutral group compared with the acidic and pre-PD groups.ConclusionsNeutral solutions with low GDPs are associated with less peritoneal membrane fibrosis and vascular sclerosis through suppression of AGE accumulation. However, contrary to expectation, blood capillary density was increased in the neutral group. The altered contents of the new PD solutions modified peritoneal membrane morphology and function in patients undergoing PD.


2001 ◽  
Vol 21 (3_suppl) ◽  
pp. 108-113 ◽  
Author(s):  
Katarzyna Wieczorowska–Tobis ◽  
Alicja Polubinska ◽  
Thomas P. Schaub ◽  
Holger Schilling ◽  
Justyna Wisniewska ◽  
...  

♦ Objective Glucose degradation products (GDPs) and low pH are potential causes of bioincompatibility of peritoneal dialysis fluids (PDFs). The aim of the present study was to compare the effect of 6 weeks’ exposure of the peritoneum in rats to two different PDFs: a standard PDF with a low pH and high level of GDPs (CAPD 3: Fresenius Medical Care, Bad Homburg, Germany), and a modified PDF with a low level of GDPs and a physiologic pH (CAPD 3 Balance: Fresenius Medical Care). ♦ Methods After catheter implantation, rats were exposed twice daily for 6 weeks to CAPD 3 fluid or to CAPD 3 Balance. At the beginning and at the end of the study, a 4-hour dwell was performed in every rat to evaluate intraperitoneal inflammation and its effect on total collagen synthesis in the in vitro cultured rat mesothelial cells ( ex vivo study). Additionally, after 6 weeks’ exposure, the peritoneal cavity was opened, and macroscopic changes were evaluated according to a semiquantitative scale. Peritoneal samples were also taken for morphology study. ♦ Results In rats treated with CAPD 3 fluid, intraperitoneal inflammation was comparable at the beginning and at the end of the experiment. In animals exposed to CAPD 3 Balance, the intensity of the intraperitoneal inflammation decreased during the study (cell count, p = 0.0781; neutrophil:macrophage ratio, p < 0.01; nitrite concentration, p < 0.05; hyaluronan level, p < 0.05). The capacity of effluent dialysate from CAPD 3 rats to activate collagen synthesis in in vitro–cultured mesothelial cells was the same at the beginning and at the end of the study. In the CAPD 3 Balance group, this capacity was statistically significantly lower at the end of the study than at the beginning ( p < 0.05). The mean thickness of the visceral peritoneum was comparable in both groups of animals, but, macroscopically, more severe fibrosis was found in the peritoneum of rats exposed to CAPD 3 as compared with animals treated with CAPD 3 Balance ( p < 0.05). ♦ Conclusion We showed that, in the rat model of peritoneal dialysis, chronic exposure of the peritoneum to PDFs with low GDPs and a physiologic pH diminished the intraperitoneal inflammatory reaction induced by dialysis, and reduced peritoneal fibrosis.


Sign in / Sign up

Export Citation Format

Share Document