scholarly journals Seabuckthorn Paste Protects Lipopolysaccharide-Induced Acute Lung Injury in Mice through Attenuation of Oxidative Stress

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Leilei Du ◽  
Xiaoxin Hu ◽  
Chu Chen ◽  
Tingting Kuang ◽  
Hengfu Yin ◽  
...  

Oxidative stress is one of the major mechanisms implicated in endotoxin-induced acute lung injury. Seabuckthorn paste (SP), a traditional Tibetan medicine with high content of polyphenols and remarkable antioxidant activity, is commonly used in treating pulmonary diseases. In the present study, the protective effects and possible underlying mechanisms of SP on lipopolysaccharide- (LPS-) induced acute lung injury in mice were investigated. It was found that body weight loss, lung tissue microstructure lesions, transvascular leakage increase, malondialdehyde augmentation, and the reduction of superoxide dismutase and glutathione peroxidase levels caused by LPS challenge were all consistently relieved by SP treatment in a dose-dependent manner. Moreover, accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2) in lung nuclei caused by SP treatment was observed. Our study demonstrated that SP can provide significant protection against LPS-induced acute lung injury through maintaining redox homeostasis, and its mechanism involves Nrf2 nuclear translocation and activation.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Jianhua Huang ◽  
Li Li ◽  
Weifeng Yuan ◽  
Linxin Zheng ◽  
Zhenhui Guo ◽  
...  

The aim of the present study is to investigate the protective effects and relevant mechanisms exerted by NEMO-binding domain peptide (NBD) against lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in mice. The ALI model was induced by intratracheally administered atomized LPS (5 mg/kg) to BABL/c mice. Half an hour before LPS administration, we treated the mice with increasing concentrations of intratracheally administered NBD or saline aerosol. Two hours after LPS administration, each group of mice was sacrificed. We observed that NBD pretreatment significantly attenuated LPS-induced lung histopathological injury in a dose-dependent manner. Western blotting established that NBD pretreatment obviously attenuated LPS-induced IκB-αand NF-κBp65 activation and NOX1, NOX2, and NOX4 overexpression. Furthermore, NBD pretreatment increased SOD and T-AOC activity and decreased MDA levels in lung tissue. In addition, NBD also inhibited TNF-αand IL-1βsecretion in BALF after LPS challenge. In conclusion, NBD protects against LPS-induced ALI in mice.


Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 198 ◽  
Author(s):  
Ba-Wool Lee ◽  
Ji-Hye Ha ◽  
Han-Gyo Shin ◽  
Seong-Hun Jeong ◽  
Da-Bin Jeon ◽  
...  

Spiraea prunifolia var. simpliciflora (SP) is traditionally used as an herbal remedy to treat fever, malaria, and emesis. This study aimed to evaluate the anti-oxidative and anti-inflammatory properties of the methanol extract of SP leaves in tumor necrosis factor (TNF)-α-stimulated NCI-H292 cells and in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. SP decreased the number of inflammatory cells and the levels of TNF-α, interleukin (IL)-1β, and IL-6 in the bronchoalveolar lavage fluid, and inflammatory cell infiltration in the lung tissues of SP-treated mice. In addition, SP significantly suppressed the mRNA and protein levels of TNF-α, IL-1β, and IL-6 in TNF-α-stimulated NCI-H292 cells. SP significantly suppressed the phosphorylation of the mitogen-activated protein kinases (MAPKs) and p65-nuclear factor-kappa B (NF-κB) in LPS-induced ALI mice and TNF-α-stimulated NCI-H292 cells. SP treatment enhanced the nuclear translocation of nuclear factor erythroid 2-related factor (Nrf2) with upregulated antioxidant enzymes and suppressed reactive oxygen species (ROS)-mediated oxidative stress in the lung tissues of LPS-induced ALI model and TNF-α-stimulated NCI-H292 cells. Collectively, SP effectively inhibited airway inflammation and ROS-mediated oxidative stress, which was closely related to its ability to induce activation of Nrf2 and inhibit the phosphorylation of MAPKs and NF-κB. These findings suggest that SP has therapeutic potential for the treatment of ALI.


2021 ◽  
pp. 1-9
Author(s):  
Hongmei Zhao ◽  
Yun Qiu ◽  
Yichen Wu ◽  
Hong Sun ◽  
Sumin Gao

<b><i>Introduction/Aims:</i></b> Hydrogen sulfide (H<sub>2</sub>S) is considered to be the third most important endogenous gasotransmitter in organisms. GYY4137 is a long-acting donor for H<sub>2</sub>S, a gas transmitter that has been shown to prevent multi-organ damage in animal studies. We previously reported the effect of GYY4137 on cardiac ischaemia reperfusion injury (IRI) in diabetic mice. However, the role and mechanism of GYY4137 in renal IRI are poorly understood. The aims of this study were to determine whether GYY4137 can effectively alleviate the injury induced by renal ischaemia reperfusion and to explore its possible mechanism. <b><i>Methods:</i></b> Mice received right nephrectomy and clipping of the left renal pedicle for 45 min. GYY4137 was administered by intraperitoneal injection for 2 consecutive days before the operation. The model of hypoxia/reoxygenation injury was established in HK-2 cells, which were pre-treated with or without GYY4137. Renal histology, function, apoptosis, and oxidative stress were measured. Western blot was used to measure the target ­protein after renal IRI. <b><i>Results:</i></b> The results indicated that GYY4137 had a clear protective effect on renal IRI as reflected by the attenuation of renal dysfunction, renal tubule injury, and apoptosis. Moreover, GYY4137 remarkably reduced renal IRI-induced oxidative stress. GYY4137 significantly elevated the nuclear translocation of nuclear factor-erythroid-2-related factor 2 (Nrf2) and the expression of antioxidant enzymes regulated by Nrf2, including SOD, HO-1, and NQO-1. <b><i>Conclusions:</i></b> GYY4137 alleviates ischaemia reperfusion-induced renal injury through activating the antioxidant effect mediated by Nrf2 signalling.


2018 ◽  
Vol 293 (47) ◽  
pp. 18242-18269 ◽  
Author(s):  
Kelsey Murphy ◽  
Killian Llewellyn ◽  
Samuel Wakser ◽  
Josef Pontasch ◽  
Natasha Samanich ◽  
...  

Oxidative stress triggers and exacerbates neurodegeneration in Alzheimer's disease (AD). Various antioxidants reduce oxidative stress, but these agents have little efficacy due to poor blood–brain barrier (BBB) permeability. Additionally, single-modal antioxidants are easily overwhelmed by global oxidative stress. Activating nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) and its downstream antioxidant system are considered very effective for reducing global oxidative stress. Thus far, only a few BBB-permeable agents activate the Nrf2-dependent antioxidant system. Here, we discovered a BBB-bypassing Nrf2-activating polysaccharide that may attenuate AD pathogenesis. Mini-GAGR, a 0.7-kDa cleavage product of low-acyl gellan gum, increased the levels and activities of Nrf2-dependent antioxidant enzymes, decreased reactive oxygen species (ROS) under oxidative stress in mouse cortical neurons, and robustly protected mitochondria from oxidative insults. Moreover, mini-GAGR increased the nuclear localization and transcriptional activity of Nrf2 similarly to known Nrf2 activators. Mechanistically, mini-GAGR increased the dissociation of Nrf2 from its inhibitor, Kelch-like ECH-associated protein 1 (Keap1), and induced phosphorylation and nuclear translocation of Nrf2 in a protein kinase C (PKC)- and fibroblast growth factor receptor (FGFR1)-dependent manner. Finally, 20-day intranasal treatment of 3xTg-AD mice with 100 nmol of mini-GAGR increased nuclear p-Nrf2 and growth-associated protein 43 (GAP43) levels in hippocampal neurons, reduced p-tau and β-amyloid (Aβ) peptide–stained neurons, and improved memory. The BBB-bypassing Nrf2-activating polysaccharide reported here may be effective in reducing oxidative stress and neurodegeneration in AD.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yukun Liu ◽  
Yongsheng Zhang ◽  
Quanrui Feng ◽  
Qinxin Liu ◽  
Jie Xie ◽  
...  

Acute lung injury (ALI) has been known to be a devastating form of respiratory infection and an important contributor to mortality in intensive care, due to its lacking of effective treatment. Inflammation, oxidative stress, and pyroptosis are associated with multiple kinds of inflammatory diseases such as ALI. It is commonly accepted that Gly-Pro-Ala (GPA) peptide regulates oxidative stress and pyroptosis in different kinds of inflammatory diseases. Our study is aimed at exploring the regulatory function and protective effects of GPA peptides on ALI. In the current study, the cecal ligation and puncture (CLP) technique was used to evoke sepsis in mice, and GPA peptide was administered intraperitoneally with different concentrations (50, 100, and 150 mg/kg) after CLP. Histopathological changes and the ratio of wet-to-dry in lung were recorded and analyzed. We also investigated the level of oxidative stress, inflammation, and pyroptosis. Results showed that GPA peptide significantly ameliorated CLP-stimulated lung tissue injury, impeded proinflammatory cytokine release, and reduced inflammatory cell infiltration. Additionally, GPA peptide suppressed oxidative stress and caspase-1-dependent pyroptosis in alveolar macrophages. Furthermore, our study showed that the GPA peptide prevents alveolar macrophage from undergoing pyroptosis by attenuating ROS. In conclusion, results demonstrated that GPA peptide has protective effects in CLP-stimulated ALI by inhibiting oxidative stress as well as pyroptosis of alveolar macrophage.


2016 ◽  
Vol 64 (1) ◽  
Author(s):  
Yuan Zong ◽  
Huali Zhang

Sepsis is a serious medical problem that is one of the main causes of high mortality in intensive care units. Fifty percent of patients with severe sepsis will develop acute lung injury (ALI). Amentoflavone (AMF) is a polyphenolic compound possessing potent anti-inflammatory activities. The present study was designed to explore the protective effects of AMF against ALI in CLP-induced septic rats. The results showed that AMF administration protected against septic ALI, as reflected by marked amelioration of histological injury of lung tissues and decrease of pulmonary edema in CLP-treated rats. AMF ameliorated CLP-induced increase of systemic and lung TNF-α and IL-1β and the binding activity of p65 NF-κB, indicating the inhibition of inflammation induced by CLP. Moreover, AMF prevented CLP-induced oxidative stress, as evidenced by increase of oxygen consumption rate, decrease of TBARS content, increase of SOD activity and GSH level in lung tissue of CLP-treated rats. CLP resulted in significant decrease of mRNA expression of Nrf2 and GCLc, which was inhibited by AMF. AMF-induced protective effects on ALI, inflammation, and oxidative stress were inhibited by lentivirus-mediated shRNA of Nrf2 and buthionine sulphoximine (BSO), an inhibitor of GSH synthesis. AMF increased Nrf2-binding activity with GCLc promoters in lung tissue of CLP-treated rats. The results suggested that AMF protected against ALI in septic rats through upregulation of Nrf2-GCLc signaling, enhancement of GSH antioxidant defense, reduction of oxidative stress and final amelioration of inflammation and histological injury of lung. The data provide new therapeutic options for the treatment of sepsis-associated ALI.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuxian Guo ◽  
Yaru Liu ◽  
Shihao Zhao ◽  
Wangting Xu ◽  
Yiqing Li ◽  
...  

AbstractOxidative stress contributes to the pathogenesis of acute lung injury. Protein S-glutathionylation plays an important role in cellular antioxidant defense. Here we report that the expression of deglutathionylation enzyme Grx1 is decreased in the lungs of acute lung injury mice. The acute lung injury induced by hyperoxia or LPS is significantly relieved in Grx1 KO and Grx1fl/flLysMcre mice, confirming the protective role of Grx1-regulated S-glutathionylation in macrophages. Using a quantitative redox proteomics approach, we show that FABP5 is susceptible to S-glutathionylation under oxidative conditions. S-glutathionylation of Cys127 in FABP5 promotes its fatty acid binding ability and nuclear translocation. Further results indicate S-glutathionylation promotes the interaction of FABP5 and PPARβ/δ, activates PPARβ/δ target genes and suppresses the LPS-induced inflammation in macrophages. Our study reveals a molecular mechanism through which FABP5 S-glutathionylation regulates macrophage inflammation in the pathogenesis of acute lung injury.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jianjian Dong ◽  
Xiaoming Zhang ◽  
Shijing Wang ◽  
Chenchen Xu ◽  
Manli Gao ◽  
...  

Studies have indicated that oxidative stress plays a crucial role in the development of Parkinson’s disease (PD) and other neurodegenerative conditions. Research has also revealed that nuclear factor erythroid 2-related factor 2 (Nrf2) triggers the expression of antioxidant genes via a series of antioxidant response elements (AREs), thus preventing oxidative stress. Thymoquinone (TQ) is the bioactive component of Nigella sativa, a medicinal plant that exhibits antioxidant and neuroprotective effects. In the present study we examined whether TQ alleviates in vivo and in vitro neurodegeneration induced by 1-methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by acting as an activator of the Nrf2/ARE cascade. We showed that TQ significantly reduced MPP+-mediated cell death and apoptosis. Moreover, TQ significantly elevated the nuclear translocation of Nrf2 and significantly increased the subsequent expression of antioxidative genes such as Heme oxygenase 1 (HO-1), quinone oxidoreductase (NQO1) and Glutathione-S-Transferase (GST). The application of siRNA to silence Nrf2 led to an abolishment in the protective effects of TQ. We also found that the intraperitoneal injection of TQ into a rodent model of PD ameliorated oxidative stress and effectively mitigated nigrostriatal dopaminergic degeneration by activating the Nrf2-ARE pathway. However, these effects were inhibited by the injection of a lentivirus wrapped Nrf2 siRNA (siNrf2). Collectively, these findings suggest that TQ alleviates progressive dopaminergic neuropathology by activating the Nrf2/ARE signaling cascade and by attenuating oxidative stress, thus demonstrating that TQ is a potential novel drug candidate for the treatment of PD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu-Qiong He ◽  
Can-Can Zhou ◽  
Jiu-Ling Deng ◽  
Liang Wang ◽  
Wan-Sheng Chen

Acute lung injury (ALI) is a common life-threatening lung disease, which is mostly associated with severe inflammatory responses and oxidative stress. Tanreqing injection (TRQ), a Chinese patent medicine, is clinically used for respiratory-related diseases. However, the effects and action mechanism of TRQ on ALI are still unclear. Recently, STING as a cytoplasmic DNA sensor has been found to be related to the progress of ALI. Here, we showed that TRQ significantly inhibited LPS-induced lung histological change, lung edema, and inflammatory cell infiltration. Moreover, TRQ markedly reduced inflammatory mediators release (TNF-α, IL-6, IL-1β, and IFN-β). Furthermore, TRQ also alleviated oxidative stress, manifested by increased SOD and GSH activities and decreased 4-HNE, MDA, LDH, and ROS activities. In addition, we further found that TRQ significantly prevented cGAS, STING, P-TBK, P-P65, P-IRF3, and P-IκBα expression in ALI mice. And we also confirmed that TRQ could inhibit mtDNA release and suppress signaling pathway mediated by STING in vitro. Importantly, the addition of STING agonist DMXAA dramatically abolished the protective effects of TRQ. Taken together, this study indicated that TRQ alleviated LPS-induced ALI and inhibited inflammatory responses and oxidative stress through STING signaling pathway.


2021 ◽  
Author(s):  
Rui Ji ◽  
Fang-yuan Jia ◽  
Xin Chen ◽  
Ze-hao Wang ◽  
Wen-yi Jin ◽  
...  

Abstract Background: In the past few years, emerging evidence established persistent oxidative stress to be a key player in the pathogenesis of polycystic ovary syndrome (PCOS). Particularly, it damages the function of granulosa cells, and thus hinders the development of follicles. The present study aimed to explore and establish the protective effects of salidroside on dihydrotestosterone (DHT)‐induced Granulosa‐like tumor cell line (KGN), mediated via antioxidant mechanisms.Methods: KGN cells were treated with DHT as a PCOS cell model, and then incubated with salidroside in different concentrations. Apoptosis and reactive oxygen species (ROS) accumulation were assessed by flow cytometry, mitochondrial membrane potential depolarization and the nuclear translocation of Nrf2 were detected by immunofluorescence staining, and the level of apoptosis-related proteins and antioxidant proteins was assessed by western blotting.Results: Salidroside partly reversed DHT mediated effects, via stimulation of nuclear factor erythroid 2‐related factor 2 (Nrf2) signaling pathway and the downstream antioxidant proteins heme oxygenase‐1(HO‐1) and quinine oxidoreductase 1(NQO1). Additionally, knockdown of Nrf2 resulted in a deterioration in DHT‐induced oxidative stress and apoptosis. It partly moderated the protective effects of salidroside as well. Mechanistically, AMPK was identified to be the upstream signaling involved in salidroside‐induced Nrf2 activation, as silencing of AMPK partly prevented the upregulation of Nrf2 and the downstream proteins HO‐1 and NQO1. Conclusion: The present study is the first to effectively demonstrate the inhibitory effect of salidroside on DHT‐stimulated oxidative stress and apoptosis in KGN cells, which was dependent on Nrf2 activation that involved AMPK.


Sign in / Sign up

Export Citation Format

Share Document