scholarly journals Does Regular Exercise Counter T Cell Immunosenescence Reducing the Risk of Developing Cancer and Promoting Successful Treatment of Malignancies?

2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
James E. Turner ◽  
Patricia C. Brum

Moderate intensity aerobic exercise training or regular physical activity is beneficial for immune function. For example, some evidence shows that individuals with an active lifestyle exhibit stronger immune responses to vaccination compared to those who are inactive. Encouragingly, poor vaccine responses, which are characteristic of an ageing immune system, can be improved by single or repeated bouts of exercise. In addition, exercise-induced lymphocytosis, and the subsequent lymphocytopenia, is thought to facilitate immune surveillance, whereby lymphocytes search tissues for antigens derived from viruses, bacteria, or malignant transformation. Aerobic exercise training is anti-inflammatory and is linked to lower morbidity and mortality from diseases with infectious, immunological, and inflammatory aetiologies, including cancer. These observations have led to the view that aerobic exercise training might counter the age-associated decline in immune function, referred to as immunosenescence. This article summarises the aspects of immune function that are sensitive to exercise-induced change, highlighting the observations which have stimulated the idea that aerobic exercise training could prevent, limit, or delay immunosenescence, perhaps even restoring aged immune profiles. These potential exercise-induced anti-immunosenescence effects might contribute to the mechanisms by which active lifestyles reduce the risk of developing cancer and perhaps benefit patients undergoing cancer therapy.

Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Megan M Wenner ◽  
Caitlin Dow ◽  
Jared Greiner ◽  
Brian Stauffer ◽  
Christopher Desouza

Endothelin-1 (ET-1)-mediated vasoconstrictor tone is elevated in postmenopausal women (PMW), contributing to their increased cardiovascular risk. Although aerobic exercise is beneficial in reducing ET-1 system activity in men, it is unknown whether this favorable vascular effect is conferred in women. In fact, contrary to men, it is uncertain whether aerobic exercise training improves endothelial dysfunction in PMW. We tested the hypothesis that aerobic exercise training reduces ET-1-mediated vasoconstriction in PMW. We further hypothesized reductions in ET-1 vasoconstrictor tone underly exercise-induced improvements in endothelium-dependent vasodilatation in PMW. Methods: Forearm blood flow (FBF) responses to intra-arterial infusion of selective ET A receptor blockade (BQ-123, 100 nmol/min for 60 min), acetylcholine (4.0, 8.0 and 16.0 μg/100 mL tissue/min) in the absence and presence of ET A receptor blockade and sodium nitroprusside (1.0, 2.0 and 4.0 μg/100 mL tissue/min) were determined before and after a 12-week aerobic exercise training intervention in 20 healthy, sedentary PMW (56 + 1 yr). Results: All 20 PMW completed the exercise intervention, walking an average of 4.9 + 0.1 d/wk for 50 + 2 min/d at 71 + 1% of maximal heart rate. After the exercise intervention, BQ-123 elicited no significant change in resting FBF in the previously sedentary PMW compared with significant vasodilation (~25%) before exercise. FBF responses to acetylcholine were markedly higher (~25%; P<0.05) after (from 4.3 + 0.3 to 13.8 + 0.8 mL/100 ml tissue/min) vs before (from 4.1 + 0.2 to 11.3 + 0.8 mL/100 ml tissue/min) exercise training. Moreover, before exercise training the co-infusion of BQ-123 with acetylcholine enhanced (~25%; P<0.05) the vasodilator response (from 4.3 + 0.3 to 13.7 + 0.7 mL/100 mL tissue/min) compared with acetylcholine alone; after exercise training, the presence of BQ-123 did not significantly affect the vasodilator response to acetylcholine. Conclusions: These data demonstrate that aerobic exercise training reduces ET-1-mediated vasoconstriction in PMW. Furthermore, decreased ET-1-mediated vasoconstriction is an important mechanism underlying aerobic exercise-induced improvement in endothelium-dependent vasodilation in PMW.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Elias El-Mafarjeh ◽  
Gisele Henrique Cardoso Martins ◽  
Jessica Jorge Probst ◽  
Alana Santos-Dias ◽  
Manoel Carneiro Oliveira-Junior ◽  
...  

Introduction. Moderate aerobic exercise training accelerates the resolution of lung fibrosis in a model of bleomycin-induced pulmonary fibrosis. However, whether it can inhibit the development of lung fibrosis is unknown. Materials and Methods. C57Bl/6 mice were distributed into four groups: Control (Co), Exercise (Exe), Bleomycin (Bleo), and Bleomycin+Exercise (Bleo+Exe). A single bleomycin dose (1.5 UI/kg) was administered orotracheally and treadmill exercise started in the same day, enduring for 4 weeks, 5x/week, 60 minutes/session, at moderate intensity. Lung mechanics, systemic and pulmonary inflammation, and lung remodeling were evaluated. Lung homogenates were used to evaluate the antioxidant status. Results. Total cells, macrophages, lymphocytes, and neutrophils numbers, in agreement with IL-6 levels, were higher in the BAL and serum of Bleo group, compared to other groups. In addition, lung levels of LTB4 in Bleo were higher than other groups, whereas SOD activity and nitric oxide levels in exercised groups (Exe and Exe+Bleo) compared to the Bleo group. Lung GPX activity was lower in Bleo and Exe+Bleo groups compared to others. Exe and Exe+Bleo groups also showed higher IL-10 expression by lung macrophages than other groups, whereas TGF-β expression was higher in Exe, Bleo, and Exe+Bleo groups compared to control. CCR7 expression was induced only in the Exe group. However, exercise did not improve lung remodeling and mechanics, or serum and pulmonary levels of VEGF, IGF-1, and TGF-β. Conclusion. Aerobic exercise training initiated concomitantly with induction of pulmonary fibrosis reduces lung and systemic inflammation but fails to inhibit lung fibrosis and mechanics impairment.


2020 ◽  
Vol 128 (4) ◽  
pp. 739-747
Author(s):  
Cemal Ozemek ◽  
Kerry L. Hildreth ◽  
Patrick J. Blatchford ◽  
K. Joseph Hurt ◽  
Rachael Bok ◽  
...  

Regular exercise enhances endothelial function in older men, but not consistently in estrogen-deficient postmenopausal women. Estradiol treatment improves basal endothelial function and restores improvements in endothelial function (flow-mediated dilation, FMD) to aerobic exercise training in postmenopausal women; however, estradiol treatment is controversial. Resveratrol, an estrogen receptor ligand, enhances exercise training effects on cardiovascular function and nitric oxide (NO) release in animal models, but impairs exercise training effects in men. We conducted a randomized cross-over, double-blinded, placebo-controlled pilot study to determine whether acute (single dose) resveratrol (250-mg tablet) or estradiol (0.05 mg/day transdermal patch) treatment enhances FMD at rest and after a single bout of moderate-intensity aerobic exercise in healthy estrogen-deficient postmenopausal women ( n = 15, 58.1 ± 3.2 yr). FMD was measured before and after (30, 60, and 120 min) a 40-min bout of moderate-intensity treadmill exercise (60–75% peak heart rate) under the respective conditions (separated by 1-2 wk). FMD was higher ( P < 0.05) before exercise and at all post-exercise time points in the resveratrol and estradiol conditions compared to placebo. FMD was increased from baseline by 120 min postexercise in the estradiol condition ( P < 0.001), but not resveratrol or PL conditions. Consistent with our previous findings, estradiol also enhances endothelial function in response to acute endurance exercise. Although resveratrol improved basal FMD, there was no apparent enhancement of FMD to acute exercise and, therefore, may not act as an estradiol mimetic. NEW & NOTEWORTHY The benefits of endurance exercise training on endothelial function are diminished in estrogen-deficient postmenopausal women, but estradiol treatment appears to restore improvements in endothelial function in this group. We show that basal endothelial function is enhanced with both acute estradiol and resveratrol treatments in estrogen-deficient postmenopausal women, but endothelial function is only enhanced following acute endurance exercise with estradiol treatment.


1999 ◽  
Vol 7 (4) ◽  
pp. 374-383 ◽  
Author(s):  
Richard A. Boileau ◽  
Edward McAuley ◽  
Demetra Demetriou ◽  
Naveen K. Devabhaktuni ◽  
Gregory L. Dykstra ◽  
...  

A trial was conducted to examine the effect of moderate aerobic exercise training (AET) on cardiorespiratory (CR) fitness. Previously sedentary participants, age 60-75 years, were randomly assigned to either AET treatment or a control group for 6 months. The AET consisted of walking for 40 min three times/week at an intensity that elevated heart rate to 65% of maximum heart rate reserve. The control group performed a supervised stretching program for 40 min three times/week. CR fitness was assessed before and after the treatments during a grade-incremented treadmill walking test. Both absolute and relative peak V̇O2 significantly increased (p < .01) in the AET group, whereas they decreased modestly in the control group. Maximum treadmill time increased significantly (p < .01) in the AET group relative to the control group. These results indicate that CR fitness as measured by peak V̇O2 modestly improves in the elderly with a moderate-intensity, relatively long-term aerobic exercise program.


2021 ◽  
Vol 11 (4) ◽  
pp. 484-487
Author(s):  
Walid Abdelbasset ◽  
Abbas Elsayed

Asthma, one of the major widespread chronic disorders among children and adolescents, has become more prevalent recently. The common manifestations of this disorder are caused by inflammatory airways that lead to airway restriction and lung hypersensitivity causing dry coughing, wheezing, and shortness of breath, all of which are combined with sleep disturbance, impaired physical activity, and reduced quality of life. The main goal of this brief review was to identify the associated variables that affect the management of asthma disease in children and young adolescents and to identify the role of physical aerobic exercise in the treatment of asthmatic children. The current review was based on prior research published in English databases such as Google Scholar, PubMed, and Embase in scientific articles published between January 2010 and October 2021 with the keywords "asthma," "children," "adolescents," "breathing episodes," "physical activity," and "physical exercise." Regular physical aerobic exercise training with moderate intensity has been shown to improve pulmonary functions, life quality, psychological conditions, and reduce asthma symptoms and EIB in children and adolescents with bronchial asthma.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 533-533
Author(s):  
Tyler Marx ◽  
Anastasiia Vasileva ◽  
Stephen Hutchison ◽  
Jennifer Stern

Abstract Aerobic exercise training is a potent intervention for the treatment and prevention of age-related disease, such as heart disease, obesity, and Type 2 Diabetes. Insulin resistance, a hallmark of Type 2 Diabetes, is reversed in response to aerobic exercise training. However, the effect of aerobic exercise training on glucagon sensitivity is unclear. Glucagon signaling at the liver promotes fatty acid oxidation, inhibits De novo lipogenesis, and activates AMP Kinase, a key mediator of healthy aging. Like humans, aging in mice age leads to a decline in physical and metabolic function. To understand the role of glucagon signaling in exercise-induced improvements in physical and metabolic function in the mouse, we implemented a 16-week aerobic exercise training protocol in young and aged mice. 16 weeks of exercise training initiated at 6 months of age increased markers of physical function (P&lt;0.01) and attenuated age-related weight gain (P&lt;0.05) and fat mass (P&lt;0.0001). Additionally, exercise training improved glucose clearance (P&lt;0.01), enhanced glucose-stimulated insulin secretion (P&lt;0.01) and decreased hepatic lipid accumulation (P&lt;0.05). Importantly, exercise training decreased hypoglycemia stimulated glucagon secretion (P&lt;0.01), with no effect on hepatic glucagon receptor mRNA expression or serum glucagon. Thus, we propose that aerobic exercise training enhances glucagon sensitivity at the liver, implicating glucagon as a potential mediator of exercise-induced improvements in aging. Studies initiating the same aerobic exercise training intervention at 18 months of age in the mouse are currently underway to establish the role of glucagon receptor signaling in exercise-induced improvements in aging.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Giselle Soares Passos ◽  
Dalva Poyares ◽  
Marcos Gonçalves Santana ◽  
Alexandre Abílio de Souza Teixeira ◽  
Fábio Santos Lira ◽  
...  

The aim of this study was to evaluate the effects of moderate aerobic exercise training on sleep, depression, cortisol, and markers of immune function in patients with chronic primary insomnia. Twenty-one sedentary participants (16 women aged 44.7 ± 9 years) with chronic primary insomnia completed a 4-month intervention of moderate aerobic exercise. Compared with baseline, polysomnographic data showed improvements following exercise training. Also observed were reductions in depression symptoms and plasma cortisol. Immunologic assays revealed a significant increase in plasma apolipoprotein A (140.9 ± 22 to 151.2 ± 22 mg/dL) and decreases in CD4 (915.6 ± 361 to 789.6 ± 310 mm3) and CD8 (532.4 ± 259 to 435.7 ± 204 mm3). Decreases in cortisol were significantly correlated with increases in total sleep time(r=-0.51)and REM sleep(r=-0.52). In summary, long-term moderate aerobic exercise training improved sleep, reduced depression and cortisol, and promoted significant changes in immunologic variables.


Sign in / Sign up

Export Citation Format

Share Document