scholarly journals Fractionally Spaced Constant Modulus Equalizer with Recognition Capability for Digital Array Radar

2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Feng Wang ◽  
Shuang Wei ◽  
Defu Jiang

Fractionally spaced blind equalizer (BE) based on constant modulus criteria is exploited to compensate for the channel-to-channel mismatch in a digital array radar. We apply the technique of recognition to improve the stability and reliability of the BE. The surveillance of the calibration signal and the convergence property of BE are both implemented with recognition description words. BE with cognitive capability is appropriate for the equalization of a digital array radar with thousands of channels and hundreds of working frequencies, where reliability becomes the most concerned indicator. The improvement of performance in the accidental scenarios is tested via numerical simulations with the cost of increased computational complexity.

2020 ◽  
Vol 12 (7) ◽  
pp. 2767 ◽  
Author(s):  
Víctor Yepes ◽  
José V. Martí ◽  
José García

The optimization of the cost and CO 2 emissions in earth-retaining walls is of relevance, since these structures are often used in civil engineering. The optimization of costs is essential for the competitiveness of the construction company, and the optimization of emissions is relevant in the environmental impact of construction. To address the optimization, black hole metaheuristics were used, along with a discretization mechanism based on min–max normalization. The stability of the algorithm was evaluated with respect to the solutions obtained; the steel and concrete values obtained in both optimizations were analyzed. Additionally, the geometric variables of the structure were compared. Finally, the results obtained were compared with another algorithm that solved the problem. The results show that there is a trade-off between the use of steel and concrete. The solutions that minimize CO 2 emissions prefer the use of concrete instead of those that optimize the cost. On the other hand, when comparing the geometric variables, it is seen that most remain similar in both optimizations except for the distance between buttresses. When comparing with another algorithm, the results show a good performance in optimization using the black hole algorithm.


2021 ◽  
Vol 11 (15) ◽  
pp. 7007
Author(s):  
Janusz P. Paplinski ◽  
Aleksandr Cariow

This article presents an efficient algorithm for computing a 10-point DFT. The proposed algorithm reduces the number of multiplications at the cost of a slight increase in the number of additions in comparison with the known algorithms. Using a 10-point DFT for harmonic power system analysis can improve accuracy and reduce errors caused by spectral leakage. This paper compares the computational complexity for an L×10M-point DFT with a 2M-point DFT.


2021 ◽  
Vol 11 (5) ◽  
pp. 2106
Author(s):  
Abdelali El Aroudi ◽  
Mohamed Debbat ◽  
Mohammed Al-Numay ◽  
Abdelmajid Abouloiafa

Numerical simulations reveal that a single-stage differential boost AC module supplied from a PV module under an Maximum Power Point Tracking (MPPT) control at the input DC port and with current synchronization at the AC grid port might exhibit bifurcation phenomena under some weather conditions leading to subharmonic oscillation at the fast-switching scale. This paper will use discrete-time approach to characterize such behavior and to identify the onset of fast-scale instability. Slope compensation is used in the inner current loop to improve the stability of the system. The compensation slope values needed to guarantee stability for the full range of operating duty cycle and leading to an optimal deadbeat response are determined. The validity of the followed procedures is finally validated by a numerical simulations performed on a detailed circuit-level switched model of the AC module.


2020 ◽  
Vol 494 (1) ◽  
pp. 1045-1057 ◽  
Author(s):  
G O Barbosa ◽  
O C Winter ◽  
A Amarante ◽  
A Izidoro ◽  
R C Domingos ◽  
...  

ABSTRACT This work investigates the possibility of close binary (CB) star systems having Earth-size planets within their habitable zones (HZs). First, we selected all known CB systems with confirmed planets (totaling 22 systems) to calculate the boundaries of their respective HZs. However, only eight systems had all the data necessary for the computation of HZ. Then, we numerically explored the stability within HZs for each one of the eight systems using test particles. From the results, we selected five systems that have stable regions inside HZs, namely Kepler-34,35,38,413, and 453. For these five cases of systems with stable regions in HZ, we perform a series of numerical simulations for planet formation considering discs composed of planetary embryos and planetesimals, with two distinct density profiles, in addition to the stars and host planets of each system. We found that in the case of the Kepler-34 and 453 systems, no Earth-size planet is formed within HZs. Although planets with Earth-like masses were formed in Kepler-453, they were outside HZ. In contrast, for the Kepler-35 and 38 systems, the results showed that potentially habitable planets are formed in all simulations. In the case of the Kepler-413system, in just one simulation, a terrestrial planet was formed within HZ.


2021 ◽  
Vol 2 (2) ◽  
pp. 325-334
Author(s):  
Neda Javadi ◽  
Hamed Khodadadi Tirkolaei ◽  
Nasser Hamdan ◽  
Edward Kavazanjian

The stability (longevity of activity) of three crude urease extracts was evaluated in a laboratory study as part of an effort to reduce the cost of urease for applications that do not require high purity enzyme. A low-cost, stable source of urease will greatly facilitate engineering applications of urease such as biocementation of soil. Inexpensive crude extracts of urease have been shown to be effective at hydrolyzing urea for carbonate precipitation. However, some studies have suggested that the activity of a crude extract may decrease with time, limiting the potential for its mass production for commercial applications. The stability of crude urease extracts shown to be effective for biocementation was studied. The crude extracts were obtained from jack beans via a simple extraction process, stored at room temperature and at 4 ℃, and periodically tested to evaluate their stability. To facilitate storage and transportation of the extracted enzyme, the longevity of the enzyme following freeze drying (lyophilization) to reduce the crude extract to a powder and subsequent re-hydration into an aqueous solution was evaluated. In an attempt to improve the shelf life of the lyophilized extract, dextran and sucrose were added during lyophilization. The stability of purified commercial urease following rehydration was also investigated. Results of the laboratory tests showed that the lyophilized crude extract maintained its activity during storage more effectively than either the crude extract solution or the rehydrated commercial urease. While incorporating 2% dextran (w/v) prior to lyophilization of the crude extract increased the overall enzymatic activity, it did not enhance the stability of the urease during storage.


Games ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 53
Author(s):  
Roberto Rozzi

We consider an evolutionary model of social coordination in a 2 × 2 game where two groups of players prefer to coordinate on different actions. Players can pay a cost to learn their opponent’s group: if they pay it, they can condition their actions concerning the groups. We assess the stability of outcomes in the long run using stochastic stability analysis. We find that three elements matter for the equilibrium selection: the group size, the strength of preferences, and the information’s cost. If the cost is too high, players never learn the group of their opponents in the long run. If one group is stronger in preferences for its favorite action than the other, or its size is sufficiently large compared to the other group, every player plays that group’s favorite action. If both groups are strong enough in preferences, or if none of the groups’ sizes is large enough, players play their favorite actions and miscoordinate in inter-group interactions. Lower levels of the cost favor coordination. Indeed, when the cost is low, in inside-group interactions, players always coordinate on their favorite action, while in inter-group interactions, they coordinate on the favorite action of the group that is stronger in preferences or large enough.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1447
Author(s):  
Jose P. Suárez ◽  
Agustín Trujillo ◽  
Tania Moreno

Showing whether the longest-edge (LE) bisection of tetrahedra meshes degenerates the stability condition or not is still an open problem. Some reasons, in part, are due to the cost for achieving the computation of similarity classes of millions of tetrahedra. We prove the existence of tetrahedra where the LE bisection introduces, at most, 37 similarity classes. This family of new tetrahedra was roughly pointed out by Adler in 1983. However, as far as we know, there has been no evidence confirming its existence. We also introduce a new data structure and algorithm for computing the number of similarity tetrahedral classes based on integer arithmetic, storing only the square of edges. The algorithm lets us perform compact and efficient high-level similarity class computations with a cost that is only dependent on the number of similarity classes.


2012 ◽  
Vol 239-240 ◽  
pp. 1522-1527
Author(s):  
Wen Bo Wu ◽  
Yu Fu Jia ◽  
Hong Xing Sun

The bottleneck assignment (BA) and the generalized assignment (GA) problems and their exact solutions are explored in this paper. Firstly, a determinant elimination (DE) method is proposed based on the discussion of the time and space complexity of the enumeration method for both BA and GA problems. The optimization algorithm to the pre-assignment problem is then discussed and the adjusting and transformation to the cost matrix is adopted to reduce the computational complexity of the DE method. Finally, a synthesis method for both BA and GA problems is presented. The numerical experiments are carried out and the results indicate that the proposed method is feasible and of high efficiency.


2013 ◽  
Vol 760-762 ◽  
pp. 2263-2266
Author(s):  
Kang Yong ◽  
Wei Chen

Beside the residual stresses and axial loads, other factors of pipe like ovality, moment could also bring a significant influence on pipe deformation under external pressure. The Standard of API-5C3 has discussed the influences of deformation caused by yield strength of pipe, pipe diameter and pipe thickness, but the factor of ovality degree is not included. Experiments and numerical simulations show that with the increasing of pipe ovality degree, the anti-deformation capability under external pressure will become lower, and ovality affecting the stability of pipe shape under external pressure is significant. So it could be a path to find out the mechanics relationship between ovality and pipe deformation under external pressure by the methods of numerical simulations and theoretical analysis.


2002 ◽  
Vol 13 (2) ◽  
pp. 263-279 ◽  
Author(s):  
Dominique Finon

Nuclear phase-out policies and the European obligation to liberalise electricity markets could put the French nuclear option dramatically at risk by influencing social preferences or by constraining power producers' investment choices in the future. So far, the particular institutional set-up which has allowed the efficient build-up and operation of several series of standardised reactors preserves the stability of the main elements of the option. However, important adaptations to the evolving industrial and political environment occur and contribute to changing the option. Some institutional changes (such as local public inquiry, creation of a Parliamentary committee, independence of safety authorities) and divergence between industrial interests already allow debates on internal options such as reprocessing, type of waste management deposits, ordering of an advanced PWR. These changes improve the cost transparency, even if internalisation of nuclear externalities (cost of insurance, provisions for waste management) is still incomplete. However, when effective, this internalisation would not affect definitively the competitive position of the nuclear production because of the parallel internalisation of CO2 externalities from fossil fuel power generation in the official rationale. Consequently the real issue for the future of the nuclear option in France remains the preservation of social acceptability in the perception of nuclear risks.


Sign in / Sign up

Export Citation Format

Share Document