scholarly journals Skin Wound Healing Potential and Mechanisms of the Hydroalcoholic Extract of Leaves and Oleoresin ofCopaifera langsdorffiiDesf. Kuntze in Rats

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Lucas Fernando Sérgio Gushiken ◽  
Carlos Alberto Hussni ◽  
Jairo Kenupp Bastos ◽  
Ariane Leite Rozza ◽  
Fernando Pereira Beserra ◽  
...  

The wound healing is a complex process which, sometimes, can be a problem in public health because of the possibility of physical disability or even death. Due to the lack of a gold standard drug in skin wound treatment and aiming at the discovery of new treatments in skin repair and the mechanisms involved in the process, we used oleoresin (OR) fromCopaifera langsdorffiiand hydroalcoholic extract of the leaves (EH) to treat rat skin wounds. For that, maleWistarrats were divided into groups (n=8): Lanette, Collagenase, 10% EH, or 10% OR and, after anesthesia, one wound of 2 cm was made in the back of animals. The wounds were treated once a day for 3, 7, or 14 days and the wound areas were measured. The rats were euthanized and skin samples destined to biochemical, molecular, and immunohistochemical analysis. The results showed a macroscopic retraction of the wounds of 10% EH and 10% OR creams and both treatments showed anti-inflammatory activity. Molecular and immunohistochemical results demonstrated the activity ofCopaifera langsdorffiicreams in angiogenesis, reepithelialization, wound retraction, and remodeling mechanisms.

1991 ◽  
Vol 99 (3) ◽  
pp. 583-586 ◽  
Author(s):  
D.J. Whitby ◽  
M.T. Longaker ◽  
M.R. Harrison ◽  
N.S. Adzick ◽  
M.W. Ferguson

Wound healing is a complex process involving the interaction of many cell types with the extracellular matrix (ECM). Fetal skin wound healing differs from that in the adult in that it occurs rapidly and without scar formation. The mechanisms underlying these differing processes may be related to the fetal environment, the stage of differentiation of the fetal cells or the ECM deposited in the wound. The spatial and temporal distribution of two components of the ECM, fibronectin and tenascin, were studied by immunostaining of cryosections from trunk wounds of fetal and adult sheep. Epithelialisation was complete earlier in the fetal wound than in the adult. The distribution of fibronectin was similar in fetal and adult wounds but tenascin was present earlier in the fetal wound. Fibronectin has several roles in wound healing including acting as a substratum for cell migration and as a mediator of cell adhesion through cell surface integrins. The attachment of fibroblasts to fibronectin is inhibited by tenascin and during development the appearance of tenascin in the ECM of migratory pathways correlates with the initiation of cell migration. Similarly, the appearance of tenascin in healing wounds may initiate cell migration. Tenascin was present in these wounds prior to cell migration and the rapid epithelialisation of fetal wounds may be due to the early appearance of tenascin in the wound.


2010 ◽  
Vol 207 (9) ◽  
pp. 1825-1833 ◽  
Author(s):  
Laura Campbell ◽  
Elaine Emmerson ◽  
Faith Davies ◽  
Stephen C. Gilliver ◽  
Andre Krust ◽  
...  

Post-menopausal women have an increased risk of developing a number of degenerative pathological conditions, linked by the common theme of excessive inflammation. Systemic estrogen replacement (in the form of hormone replacement therapy) is able to accelerate healing of acute cutaneous wounds in elderly females, linked to its potent antiinflammatory activity. However, in contrast to many other age-associated pathologies, the detailed mechanisms through which estrogen modulates skin repair, particularly the cell type–specific role of the two estrogen receptors, ERα and ERβ, has yet to be determined. Here, we use pharmacological activation and genetic deletion to investigate the role of both ERα and ERβ in cutaneous tissue repair. Unexpectedly, we report that exogenous estrogen replacement to ovariectomised mice in the absence of ERβ actually delayed wound healing. Moreover, healing in epidermal-specific ERβ null mice (K14-cre/ERβL2/L2) largely resembled that in global ERβ null mice. Thus, the beneficial effects of estrogen on skin wound healing are mediated by epidermal ERβ, in marked contrast to most other tissues in the body where ERα is predominant. Surprisingly, agonists to both ERα and ERβ are potently antiinflammatory during skin repair, indicating clear uncoupling of inflammation and overall efficiency of repair. Thus, estrogen-mediated antiinflammatory activity is not the principal factor in accelerated wound healing.


2021 ◽  
Author(s):  
Hua Qu ◽  
Tian Miao ◽  
Yuren Wang ◽  
Liang Tan ◽  
Bangliang Huang ◽  
...  

Cutaneous wound healing is a fundamental biological and coordinated process, and failure to maintain this process contributes to the dysfunction of tissue homeostasis, increasing the global burden of diabetic foot ulcerations. However, the factors that mediate this process are not fully understood. Here, we identify dedicator of cytokinesis 5 (Dock5) a pivotal role in keratinocyte functions contributing to the process of skin wound healing. Specifically, Dock5 is highly upregulated during the proliferative phase of wound repair and is predominantly expressed in epidermal keratinocytes. It regulates keratinocyte adhesion, migration and proliferation, and influences the functions of extracellular matrix (ECM) deposition by facilitating the ubiquitination of transcription factor ZEB1 to activate laminin-332/integrin signaling. Genetic ablation of Dock5 in mice leads to attenuated re-epithelialization and granulation tissue formation, while Dock5 overexpression-improved skin repair can be abrogated by LAMA3 knockdown. Importantly, Dock5 expression in the skin edge is reduced in patients and animal models of diabetes, further suggesting a direct correlation between its abundance and healing capability. The rescue of Dock5 expression in diabetic mice causes a significant improvement in re-epithelialization, collagen deposition, ECM production and granulation. Our study provides a potential therapeutic target for wound healing impairment during diabetes.


2019 ◽  
Vol 20 (20) ◽  
pp. 5086 ◽  
Author(s):  
Julia Etich ◽  
Manuel Koch ◽  
Raimund Wagener ◽  
Frank Zaucke ◽  
Mario Fabri ◽  
...  

The extracellular matrix (ECM) provides structural support for tissue architecture and is a major effector of cell behavior during skin repair and inflammation. Macrophages are involved in all stages of skin repair but only limited knowledge exists about macrophage-specific expression and regulation of ECM components. In this study, we used transcriptome profiling and bioinformatic analysis to define the unique expression of ECM-associated genes in cultured macrophages. Characterization of the matrisome revealed that most genes were constitutively expressed and that several genes were uniquely regulated upon interferon gamma (IFNγ) and dexamethasone stimulation. Among those core matrisome and matrisome-associated components transforming growth factor beta (TGFβ)-induced, matrix metalloproteinase 9 (MMP9), elastin microfibril interfacer (EMILIN)-1, netrin-1 and gliomedin were also present within the wound bed at time points that are characterized by profound macrophage infiltration. Hence, macrophages are a source of ECM components in vitro as well as during skin wound healing, and identification of these matrisome components is a first step to understand the role and therapeutic value of ECM components in macrophages and during wound healing.


Author(s):  
Deimantė Narauskaitė ◽  
Gabrielė Vydmantaitė ◽  
Justina Rusteikaitė ◽  
Revathi Sampath ◽  
Akvilė Rudaitytė ◽  
...  

Each year, millions of individuals suffer from a non-healing wound, abnormal scarring, or injuries accompanied by an infection. For these cases, scientists are searching for new therapeutic interventions, from which one of the most promising is the use of extracellular vesicles (EVs). Naturally, EV-based signalling takes part in all four wound healing phases: hemostasis, inflammation, proliferation and remodelling. Such an extensive involvement of EVs suggests exploiting their action to modulate the impaired healing phase. Furthermore, next to their natural wound healing capacity, EVs can be engineered for better defined pharmaceutical purposes, such as carrying specific cargo or targeting specific destinations by labelling them with certain surface proteins. This review aims to promote scientific awareness in basic and translational research of EVs by summarizing the current knowledge about their natural role in each stage of skin repair and the most recent findings in application areas, such as wound healing, skin regeneration and treatment of dermal diseases, including the stem cell-derived, plant-derived and engineered EVs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sayan Chakraborty ◽  
Divyaleka Sampath ◽  
Melissa Ong Yu Lin ◽  
Matthew Bilton ◽  
Cheng-Kuang Huang ◽  
...  

AbstractAn orchestrated wound healing program drives skin repair via collective epidermal cell proliferation and migration. However, the molecular determinants of the tissue microenvironment supporting wound healing remain poorly understood. Herein we discover that proteoglycan Agrin is enriched within the early wound-microenvironment and is indispensable for efficient healing. Agrin enhances the mechanoperception of keratinocytes by augmenting their stiffness, traction stress and fluidic velocity fields in retaliation to bulk substrate rigidity. Importantly, Agrin overhauls cytoskeletal architecture via enhancing actomyosin cables upon sensing geometric stress and force following an injury. Moreover, we identify Matrix Metalloproteinase-12 (MMP12) as a downstream effector of Agrin’s mechanoperception. We also reveal a promising potential of a recombinant Agrin fragment as a bio-additive material that assimilates optimal mechanobiological and pro-angiogenic parameters by engaging MMP12 in accelerated wound healing. Together, we propose that Agrin-MMP12 pathway integrates a broad range of mechanical stimuli to coordinate a competent skin wound healing niche.


2021 ◽  
Author(s):  
Hua Qu ◽  
Tian Miao ◽  
Yuren Wang ◽  
Liang Tan ◽  
Bangliang Huang ◽  
...  

Cutaneous wound healing is a fundamental biological and coordinated process, and failure to maintain this process contributes to the dysfunction of tissue homeostasis, increasing the global burden of diabetic foot ulcerations. However, the factors that mediate this process are not fully understood. Here, we identify dedicator of cytokinesis 5 (Dock5) a pivotal role in keratinocyte functions contributing to the process of skin wound healing. Specifically, Dock5 is highly upregulated during the proliferative phase of wound repair and is predominantly expressed in epidermal keratinocytes. It regulates keratinocyte adhesion, migration and proliferation, and influences the functions of extracellular matrix (ECM) deposition by facilitating the ubiquitination of transcription factor ZEB1 to activate laminin-332/integrin signaling. Genetic ablation of Dock5 in mice leads to attenuated re-epithelialization and granulation tissue formation, while Dock5 overexpression-improved skin repair can be abrogated by LAMA3 knockdown. Importantly, Dock5 expression in the skin edge is reduced in patients and animal models of diabetes, further suggesting a direct correlation between its abundance and healing capability. The rescue of Dock5 expression in diabetic mice causes a significant improvement in re-epithelialization, collagen deposition, ECM production and granulation. Our study provides a potential therapeutic target for wound healing impairment during diabetes.


2021 ◽  
Vol 14 (8) ◽  
pp. 811
Author(s):  
Deimantė Narauskaitė ◽  
Gabrielė Vydmantaitė ◽  
Justina Rusteikaitė ◽  
Revathi Sampath ◽  
Akvilė Rudaitytė ◽  
...  

Each year, millions of individuals suffer from a non-healing wound, abnormal scarring, or injuries accompanied by an infection. For these cases, scientists are searching for new therapeutic interventions, from which one of the most promising is the use of extracellular vesicles (EVs). Naturally, EV-based signaling takes part in all four wound healing phases: hemostasis, inflammation, proliferation, and remodeling. Such an extensive involvement of EVs suggests exploiting their action to modulate the impaired healing phase. Furthermore, next to their natural wound healing capacity, EVs can be engineered for better defined pharmaceutical purposes, such as carrying specific cargo or targeting specific destinations by labelling them with certain surface proteins. This review aims to promote scientific awareness in basic and translational research of EVs by summarizing the current knowledge about their natural role in each stage of skin repair and the most recent findings in application areas, such as wound healing, skin regeneration, and treatment of dermal diseases, including the stem cell-derived, plant-derived, and engineered EVs.


Sign in / Sign up

Export Citation Format

Share Document