scholarly journals LC-MS-Based Metabolic Fingerprinting of Aqueous Humor

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Karolina Pietrowska ◽  
Diana Anna Dmuchowska ◽  
Paulina Samczuk ◽  
Tomasz Kowalczyk ◽  
Pawel Krasnicki ◽  
...  

Aqueous humor (AH) is a transparent fluid which fills the anterior and posterior chambers of the eye. It supplies nutrients and removes metabolic waste from avascular tissues in the eye. Proper homeostasis of AH is required to maintain adequate intraocular pressure as well as optical and refractive properties of the eye. Application of metabolomics to study human AH may improve knowledge about the molecular mechanisms of eye diseases. Until now, global analysis of metabolites in AH has been mainly performed using NMR. Among the analytical platforms used in metabolomics, LC-MS allows for the highest metabolome coverage. The aim of this study was to develop a method for extraction and analysis of AH metabolites by LC-QTOF-MS. Different protocols for AH preparation were tested. The best results were obtained when one volume of AH was mixed with one volume of methanol : ethanol (1 : 1). In the final method, 2 µL of extracted sample was analyzed by LC-QTOF-MS. The method allowed for reproducible measurement of over 1000 metabolic features. Almost 250 metabolites were identified in AH and assigned to 47 metabolic pathways. This method is suitable to study the potential role of amino acids, lipids, oxidative stress, or microbial metabolites in development of ocular diseases.

2021 ◽  
Vol 8 ◽  
Author(s):  
Mohammed M. Almutairi ◽  
Farzane Sivandzade ◽  
Thamer H. Albekairi ◽  
Faleh Alqahtani ◽  
Luca Cucullo

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical manifestations of COVID-19 include dry cough, difficult breathing, fever, fatigue, and may lead to pneumonia and respiratory failure. There are significant gaps in the current understanding of whether SARS-CoV-2 attacks the CNS directly or through activation of the peripheral immune system and immune cell infiltration. Although the modality of neurological impairments associated with COVID-19 has not been thoroughly investigated, the latest studies have observed that SARS-CoV-2 induces neuroinflammation and may have severe long-term consequences. Here we review the literature on possible cellular and molecular mechanisms of SARS-CoV-2 induced-neuroinflammation. Activation of the innate immune system is associated with increased cytokine levels, chemokines, and free radicals in the SARS-CoV-2-induced pathogenic response at the blood-brain barrier (BBB). BBB disruption allows immune/inflammatory cell infiltration into the CNS activating immune resident cells (such as microglia and astrocytes). This review highlights the molecular and cellular mechanisms involved in COVID-19-induced neuroinflammation, which may lead to neuronal death. A better understanding of these mechanisms will help gain substantial knowledge about the potential role of SARS-CoV-2 in neurological changes and plan possible therapeutic intervention strategies.


2021 ◽  
Author(s):  
Zahra Heydarifard ◽  
Sevrin Zadheidar ◽  
Jila Yavarian ◽  
Somayeh Shatizadeh Malekshahi ◽  
Shirin Kalantari ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xue Yang ◽  
Xinan Pan ◽  
Xiaorui Zhao ◽  
Jin Luo ◽  
Mingpu Xu ◽  
...  

Background. Autophagy is a catabolic process that depends on the lysosome. It is usually used to maintain cellular homeostasis, survival and development by degrading abnormal substances and dysfunctional organelles, especially when the cell is exposed to starvation or other stresses. Increasing studies have reported that autophagy is associated with various eye diseases, of which aging is one of the important factors. Objective. To summarize the functional and regulatory role of autophagy in ocular diseases with aging, and discuss the possibility of autophagy-targeted therapy in age-related diseases. Methods. PubMed searches were performed to identify relevant articles published mostly in the last 5 years. The key words were used to retrieve including “autophagy”, “aging”, “oxidative stress AND autophagy”, “dry eye AND autophagy”, “corneal disease AND autophagy”, “glaucoma AND autophagy”, “cataract AND autophagy”, “AMD AND autophagy”, “cardiovascular diseases AND autophagy”, “diabetes AND autophagy”. After being classified and assessed, the most relevant full texts in English were chosen. Results. Apart from review articles, more than two research articles for each age-related eye diseases related to autophagy were retrieved. We only included the most relevant and recent studies for summary and discussion. Conclusion. Autophagy has both protective and detrimental effects on the progress of age-related eye diseases. Different types of studies based on certain situations in vitro showed distinct results, which do not necessarily coincide with the actual situation in human bodies completely. It means the exact role and regulatory function of autophagy in ocular diseases remains largely unknown. Although autophagy as a potential therapeutic target has been proposed, many problems still need to be solved before it applies to clinical practice.


2019 ◽  
Vol 77 (8) ◽  
pp. 1531-1550 ◽  
Author(s):  
Katarzyna Walczak ◽  
Artur Wnorowski ◽  
Waldemar A. Turski ◽  
Tomasz Plech

Abstract Kynurenic acid (KYNA) is an endogenous tryptophan metabolite exerting neuroprotective and anticonvulsant properties in the brain. However, its importance on the periphery is still not fully elucidated. KYNA is produced endogenously in various types of peripheral cells, tissues and by gastrointestinal microbiota. Furthermore, it was found in several products of daily human diet and its absorption in the digestive tract was evidenced. More recent studies were focused on the potential role of KYNA in carcinogenesis and cancer therapy; however, the results were ambiguous and the biological activity of KYNA in these processes has not been unequivocally established. This review aims to summarize the current views on the relationship between KYNA and cancer. The differences in KYNA concentration between physiological conditions and cancer, as well as KYNA production by both normal and cancer cells, will be discussed. The review also describes the effect of KYNA on cancer cell proliferation and the known potential molecular mechanisms of this activity.


2016 ◽  
Vol 137 (2) ◽  
pp. AB389
Author(s):  
Caroline Roduit ◽  
Remo Frei ◽  
Ruth Ferstl ◽  
Susanne Loeliger ◽  
Charlotte Braun-Fahrländer ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3088
Author(s):  
Laura Quintieri ◽  
Leonardo Caputo ◽  
Milena Brasca ◽  
Francesca Fanelli

Food spoilage is a serious issue dramatically impacting the worldwide need to counteract food insecurity. Despite the very expensive application of low temperatures, the proper conservation of fresh dairy products is continuously threatened at different stages of production and commercialization by psychrotrophic populations mainly belonging to the Pseudomonas genus. These bacteria cause discolouration, loss of structure, and off-flavours, with fatal implications on the quality and shelf-life of products. While the effects of pseudomonad decay have been widely reported, the mechanisms responsible for the activation and regulation of spoilage pathways are still poorly explored. Recently, molecule signals and regulators involved in quorum sensing (QS), such as homoserine lactones, the luxR/luxI system, hdtS, and psoR, have been detected in spoiled products and bacterial spoiler species; this evidence suggests the role of bacterial cross talk in dairy spoilage and paves the way towards the search for novel preservation strategies based on QS inhibition. The aim of this review was to investigate the advancements achieved by the application of omic approaches in deciphering the molecular mechanisms controlled by QS systems in pseudomonads, by focusing on the regulators and metabolic pathways responsible for spoilage of fresh dairy products. In addition, due the ability of pseudomonads to quickly spread in the environment as biofilm communities, which may also include pathogenic and multidrug-resistant (MDR) species, the risk derived from the gaps in clearly defined and regulated sanitization actions is underlined.


2020 ◽  
Vol 27 (27) ◽  
pp. 4549-4566
Author(s):  
María Garranzo-Asensio ◽  
Ana Montero-Calle ◽  
Guillermo Solís-Fernández ◽  
Rodrigo Barderas ◽  
Ana Guzman-Aranguez

: The eye is a complex organ comprised of several compartments with exclusive and specialized properties that reflect their diverse functions. Although the prevalence of eye pathologies is increasing, mainly because of its correlation with aging and of generalized lifestyle changes, the pathogenic molecular mechanisms of many common ocular diseases remain poorly understood. Therefore, there is an unmet need to delve into the pathogenesis, diagnosis, and treatment of eye diseases to preserve ocular health and reduce the incidence of visual impairment or blindness. Proteomics analysis stands as a valuable tool for deciphering protein profiles related to specific ocular conditions. In turn, such profiles can lead to real breakthroughs in the fields of ocular science and ophthalmology. Among proteomics techniques, protein microarray technology stands out by providing expanded information using very small volumes of samples. : In this review, we present a brief summary of the main types of protein microarrays and their application for the identification of protein changes in chronic ocular diseases such as dry eye, glaucoma, age-related macular degeneration, or diabetic retinopathy. The validation of these specific protein alterations could provide new biomarkers, disclose eye diseases pathways, and help in the diagnosis and development of novel therapies for eye pathologies.


2021 ◽  
Vol 28 ◽  
Author(s):  
Amro M. Soliman ◽  
Srijit Das ◽  
Pasuk Mahakkanukrauh

: There is an increase in the incidence of cardiovascular diseases with aging and it is one of the leading causes of death worldwide. The main cardiovascular pathologies include atherosclerosis, stroke, myocardial infarction, hypertension and stroke. Chronic inflammation is one of the significant contributors to the age-related vascular diseases. Therefore, it is important to understand the molecular mechanisms of the persistent inflammatory conditions occurring in the blood vessels as well as the signaling pathways involved. Herein, we performed an extant search of literature involving PubMed, ISI, WoS and Scopus databases for retrieving all relevant articles with the most recent findings illustrating the potential role of various inflammatory mediators along with their proposed activated pathways in the pathogenesis and progression of vascular aging. We also highlight the major pathways contributing to age-related vascular disorders. The outlined molecular mechanisms, pathways and mediators of vascular aging represent potential drug targets that can be utilized to inhibit and/or slow the pathogenesis and progression of vascular aging.


2017 ◽  
Vol 372 (1715) ◽  
pp. 20160155 ◽  
Author(s):  
Ada X. Yee ◽  
Yu-Tien Hsu ◽  
Lu Chen

Hebbian and homeostatic plasticity are two major forms of plasticity in the nervous system: Hebbian plasticity provides a synaptic basis for associative learning, whereas homeostatic plasticity serves to stabilize network activity. While achieving seemingly very different goals, these two types of plasticity interact functionally through overlapping elements in their respective mechanisms. Here, we review studies conducted in the mammalian central nervous system, summarize known circuit and molecular mechanisms of homeostatic plasticity, and compare these mechanisms with those that mediate Hebbian plasticity. We end with a discussion of ‘local’ homeostatic plasticity and the potential role of local homeostatic plasticity as a form of metaplasticity that modulates a neuron's future capacity for Hebbian plasticity. This article is part of the themed issue ‘Integrating Hebbian and homeostatic plasticity’.


Sign in / Sign up

Export Citation Format

Share Document