scholarly journals Does the Gut Microbiota Influence Immunity and Inflammation in Multiple Sclerosis Pathophysiology?

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Monika Adamczyk-Sowa ◽  
Aldona Medrek ◽  
Paulina Madej ◽  
Wirginia Michlicka ◽  
Pawel Dobrakowski

Aim.Evaluation of the impact of gut microflora on the pathophysiology of MS.Results. The etiopathogenesis of MS is not fully known. Gut microbiota may be of a great importance in the pathogenesis of MS, since recent findings suggest that substitutions of certain microbial population in the gut can lead to proinflammatory state, which can lead to MS in humans. In contrast, other commensal bacteria and their antigenic products may protect against inflammation within the central nervous system. The type of intestinal flora is affected by antibiotics, stress, or diet. The effects on MS through the intestinal microflora can also be achieved by antibiotic therapy andLactobacillus. EAE, as an animal model of MS, indicates a strong influence of the gut microbiota on the immune system and shows that disturbances in gut physiology may contribute to the development of MS.Conclusions.The relationship between the central nervous system, the immune system, and the gut microbiota relates to the influence of microorganisms in the development of MS. A possible interaction between gut microbiota and the immune system can be perceived through regulation by the endocannabinoid system. It may offer an opportunity to understand the interaction comprised in the gut-immune-brain axis.

2020 ◽  
Author(s):  
Ting-Ting Luo ◽  
Chun-Qiu Dai ◽  
Jia-Qi Wang ◽  
Zheng-Mei Wang ◽  
Yi Yang ◽  
...  

Abstract Objectives: Drp1 is widely expressed in the mouse central nervous system and plays a role in inducing the mitochondrial fission process. Many diseases are associated with Drp1 and mitochondria. However, since the exact distribution of Drp1 has not been specifically observed, it is difficult to determine the impact of anti-Drp1 molecules on the human body. Clarifying the specific Drp1 distribution could be a good approach to targeted treatment or prognosis. Methods: We visualized the distribution of Drp1 in different brain regions and explicated the relationship between Drp1 and mitochondria. GAD67-GFP knock-in mice were utilized to detect the expression patterns of Drp1 in GABAergic neurons. We also further analyzed Drp1 expression in human malignant glioma tissue. Results : Drp1 was widely but heterogeneously distributed in the central nervous system. Further observation indicated that Drp1 was highly and heterogeneously expressed in inhibitory neurons. Under transmission electron microscopy, the distribution of Drp1 was higher in dendrites than other areas in neurons, and only a small amount of Drp1 was localized in mitochondria. In human malignant glioma, the fluorescence intensity of Drp1 increased from grade I-III, while grade IV showed a declining trend. Conclusion: In this study, we observed a wide heterogeneous distribution of Drp1 in the central nervous system, which might be related to the occurrence and development of neurologic disease. We hope that the relationship between Drp1 and mitochondria may will to therapeutic guidance in the clinic.


2021 ◽  
Vol 22 (18) ◽  
pp. 10028
Author(s):  
Julia Doroszkiewicz ◽  
Magdalena Groblewska ◽  
Barbara Mroczko

The gut microbiome has attracted increasing attention from researchers in recent years. The microbiota can have a specific and complex cross-talk with the host, particularly with the central nervous system (CNS), creating the so-called “gut–brain axis”. Communication between the gut, intestinal microbiota, and the brain involves the secretion of various metabolites such as short-chain fatty acids (SCFAs), structural components of bacteria, and signaling molecules. Moreover, an imbalance in the gut microbiota composition modulates the immune system and function of tissue barriers such as the blood–brain barrier (BBB). Therefore, the aim of this literature review is to describe how the gut–brain interplay may contribute to the development of various neurological disorders, combining the fields of gastroenterology and neuroscience. We present recent findings concerning the effect of the altered microbiota on neurodegeneration and neuroinflammation, including Alzheimer’s and Parkinson’s diseases, as well as multiple sclerosis. Moreover, the impact of the pathological shift in the microbiome on selected neuropsychological disorders, i.e., major depressive disorders (MDD) and autism spectrum disorder (ASD), is also discussed. Future research on the effect of balanced gut microbiota composition on the gut–brain axis would help to identify new potential opportunities for therapeutic interventions in the presented diseases.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Thomas Schwitzer ◽  
Raymund Schwan ◽  
Karine Angioi-Duprez ◽  
Anne Giersch ◽  
Vincent Laprevote

Cannabisis one of the most prevalent drugs used in industrialized countries. The main effects ofCannabisare mediated by two major exogenous cannabinoids: ∆9-tetrahydroxycannabinol and cannabidiol. They act on specific endocannabinoid receptors, especially types 1 and 2. Mammals are endowed with a functional cannabinoid system including cannabinoid receptors, ligands, and enzymes. This endocannabinoid signaling pathway is involved in both physiological and pathophysiological conditions with a main role in the biology of the central nervous system. As the retina is a part of the central nervous system due to its embryonic origin, we aim at providing the relevance of studying the endocannabinoid system in the retina. Here, we review the distribution of the cannabinoid receptors, ligands, and enzymes in the retina and focus on the role of the cannabinoid system in retinal neurobiology. This review describes the presence of the cannabinoid system in critical stages of retinal processing and its broad involvement in retinal neurotransmission, neuroplasticity, and neuroprotection. Accordingly, we support the use of synthetic cannabinoids as new neuroprotective drugs to prevent and treat retinal diseases. Finally, we argue for the relevance of functional retinal measures in cannabis users to evaluate the impact of cannabis use on human retinal processing.


Author(s):  
Yixuan Liang ◽  
Li Cui ◽  
Jiguo Gao ◽  
Mingqin Zhu ◽  
Ying Zhang ◽  
...  

AbstractThe search for therapeutic targets for Parkinson’s disease (PD) is hindered by the incomplete understanding of the pathophysiology of the disease. Mitochondrial dysfunction is an area with high potential. The neurobiological signaling connections between the gut microbiome and the central nervous system are incompletely understood. Multiple lines of evidence suggest that the gut microbiota participates in the pathogenesis of PD. Gut microbial dysbiosis may contribute to the loss of dopaminergic neurons through mitochondrial dysfunction. The intervention of gut microbial metabolites via the microbiota-gut-brain axis may serve as a promising therapeutic strategy for PD. In this narrative review, we summarize the potential roles of gut microbial dysbiosis in PD, with emphasis on microbial metabolites and mitochondrial function. We then review the possible ways in which microbial metabolites affect the central nervous system, as well as the impact of microbial metabolites on mitochondrial dysfunction. We finally discuss the possibility of gut microbiota as a therapeutic target for PD.


2020 ◽  
Author(s):  
Ting-Ting Luo ◽  
Chun-Qiu Dai ◽  
Jia-Qi Wang ◽  
Zheng-Mei Wang ◽  
Yi Yang ◽  
...  

Abstract Objectives: Drp1 is widely expressed in the mouse central nervous system and plays a role in inducing the mitochondrial fission process. Many diseases are associated with Drp1 and mitochondria. However, since the exact distribution of Drp1 has not been specifically observed, it is difficult to determine the impact of anti-Drp1 molecules on the human body. Clarifying the specific Drp1 distribution could be a good approach to targeted treatment or prognosis.Methods: We visualized the distribution of Drp1 in different brain regions and explicated the relationship between Drp1 and mitochondria. GAD67-GFP knock-in mice were utilized to detect the expression patterns of Drp1 in GABAergic neurons. We also further analyzed Drp1 expression in human malignant glioma tissue. Results: Drp1 was widely but heterogeneously distributed in the central nervous system. Further observation indicated that Drp1 was highly and heterogeneously expressed in inhibitory neurons. Under transmission electron microscopy, the distribution of Drp1 was higher in dendrites than other areas in neurons, and only a small amount of Drp1 was localized in mitochondria. In human malignant glioma, the fluorescence intensity of Drp1 increased from grade I-III, while grade IV showed a declining trend. Conclusion: In this study, we observed a wide heterogeneous distribution of Drp1 in the central nervous system, which might be related to the occurrence and development of neurologic disease. We hope that the relationship between Drp1 and mitochondria may will to therapeutic guidance in the clinic.


2019 ◽  
Vol 20 (12) ◽  
pp. 3109 ◽  
Author(s):  
Sarah Hirschberg ◽  
Barbara Gisevius ◽  
Alexander Duscha ◽  
Aiden Haghikia

Within the last century, human lifestyle and dietary behaviors have changed dramatically. These changes, especially concerning hygiene, have led to a marked decrease in some diseases, i.e., infectious diseases. However, other diseases that can be attributed to the so-called ‘Western’ lifestyle have increased, i.e., metabolic and cardiovascular disorders. More recently, multifactorial disorders, such as autoimmune and neurodegenerative diseases, have been associated with changes in diet and the gut microbiome. In particular, short chain fatty acid (SCFA)-producing bacteria are of high interest. SCFAs are the main metabolites produced by bacteria and are often reduced in a dysbiotic state, causing an inflammatory environment. Based on advanced technologies, high-resolution investigations of the abundance and composition of the commensal microbiome are now possible. These techniques enable the assessment of the relationship between the gut microbiome, its metabolome and gut-associated immune and neuronal cells. While a growing number of studies have shown the indirect impact of gut metabolites, mediated by alterations of immune-mediated mechanisms, the direct influence of these compounds on cells of the central nervous system needs to be further elucidated. For instance, the SCFA propionic acid (PA) increases the amount of intestine-derived regulatory T cells, which furthermore can positively affect the central nervous system (CNS), e.g., by increasing remyelination. However, the question of if and how PA can directly interact with CNS-resident cells is a matter of debate. In this review, we discuss the impact of an altered microbiome composition in relation to various diseases and discuss how the commensal microbiome is shaped, starting from the beginning of human life.


1984 ◽  
Vol 4 (2) ◽  
pp. 93-98 ◽  
Author(s):  
Luigi F. Agnati ◽  
Kjell Fuxe

The hypothesis is introduced that miniaturization of neuronal circuits in the central nervous system and the hierarchical organization of the various levels, where information handling can take place, may be the key to understand the enormous capability of the human brain to store engrams as well as its astonishing capacity to reconstruct and organize engrams and thus to perform highly sophisticated integrations. The concept is also proposed that in order to understand the relationship between the structural and functional plasticity of the central nervous system it is necessary to postulate the existence of memory storage at the network level, at the local circuit level, at the synaptic level, at the membrane level, and finally at the molecular level. Thus, memory organization is similar to the hierarchical organization of the various levels, where information handling takes place in the nervous system. In addition, each higher level plays a role in the reconstruction and organization of the engrams stored at lower levels. Thus, the trace of the functionally stored memory (i.e. its reconstruction and organization at various levels of storage) will depend not only on the chemicophysical changes in the membranes of the local circuits but also on the organization of the local circuits themselves and their associated neuronal networks.


1935 ◽  
Vol 31 (6) ◽  
pp. 777-787
Author(s):  
D. S. Vorontsov

Not only in the peripheral working organs, irritating substances are formed, which, as we can see, take an active part in their regulation, but also in the central nervous system, in the relationship of its individual elements, such substances apparently play an important role.


Sign in / Sign up

Export Citation Format

Share Document