scholarly journals Development and Application of Integrated Aerodynamic Protuberant Foil Journal and Thrust Bearing in Turboexpander

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Tianwei Lai ◽  
Yu Guo ◽  
Wei Wang ◽  
Yu Wang ◽  
Yu Hou

Foil bearing provides compliant support and moderate Coulomb friction for rotor-bearing system, which is conducive to stability and reliability of high speed rotating machinery. In this paper, both hydrodynamic lubricated foil journal and foil thrust bearings are applied in a 150 m3·h−1 turboexpander for air separation. In the bearings, protuberant foil is chosen as the supporting subfoil due to its merits of easy fabrication and assembly. Static loading and deflection of the bearings are tested, respectively, before integration into the turboexpander. Afterwards, the loading and deflection curves of the journal and thrust bearings are polynomial fitted using least-square method. Then, performance tests are carried out on the rotor-bearing system, including transient speed-up, high speed, and speed-down processes. In the tests, the turboexpander supported by the hydrodynamic foil bearings operates smoothly with repeatability. Maximal rotor speed of the turboexpander reaches 52000 rpm with hydrodynamic lubricated protuberant foil bearings.

Author(s):  
Hooshang Heshmat ◽  
James F. Walton ◽  
Christopher Della Corte ◽  
Mark Valco

An oil-free, 150 Hp turbocharger was successfully operated to 100% speed (95,000 rpm), with turbine inlet temperatures to 650°C on a turbocharger gas test stand. Development of this high speed turbomachine included bearing and lubricant component development tests, rotor-bearing dynamic simulator qualification and gas stand tests of the assembled turbocharger. Self acting, compliant foil hydrodynamic air bearings capable of sustained operation at 650°C and maximum loads to 750 N were used in conjunction with a newly designed shaft and system center housing. Gas stand and simulator test results revealed stable bearing temperatures, low rotor vibrations, good shock tolerance and the ability of the rotor bearing system to sustain overspeed conditions to 121,500 rpm. Bearing component development tests demonstrated 100,000 start stop cycles at 650°C with a newly developed solid film lubricant coating. In a separate demonstration of a 100 mm compliant foil bearing, loads approaching 4,500 N were supported by a compliant foil bearing. This combination of component and integrated rotor-bearing system technology demonstrations addresses many of the issues associated with application of compliant foil bearings to gas turbine engines.


Author(s):  
Nguyen LaTray ◽  
Daejong Kim

This work presents the theoretical and experimental rotordynamic evaluations of a rotor–air foil bearing (AFB) system supporting a large overhung mass for high-speed application. The proposed system highlights the compact design of a single shaft rotor configuration with turbomachine components arranged on one side of the bearing span. In this work, low-speed tests up to 45 krpm are performed to measure lift-off speed and to check bearing manufacturing quality. Rotordynamic performance at high speeds is evaluated both analytically and experimentally. In the analytical approach, simulated imbalance responses are studied using both rigid and flexible shaft models with bearing forces calculated from the transient Reynolds equation along with the rotor motion. The simulation predicts that the system experiences small synchronous rigid mode vibration at 20 krpm and bending mode at 200 krpm. A high-speed test rig is designed to experimentally evaluate the rotor–air foil bearing system. The high-speed tests are operated up to 160 krpm. The vibration spectrum indicates that the rotor–air foil bearing system operates under stable conditions. The experimental waterfall plots also show very small subsynchronous vibrations with frequency locked to the system natural frequency. Overall, this work demonstrates potential capability of the air foil bearings in supporting a shaft with a large overhung mass at high speed.


Author(s):  
Crystal A. Heshmat ◽  
Hooshang Heshmat ◽  
Mark J. Valco ◽  
Kevin C. Radil ◽  
Christopher Della Corte

This paper describes an oil-free, 150 Hp turbocharger that was successfully operated with compliant foil bearings in a range of pitch and roll angles, including vertical operation, thereby demonstrating its viability for aircraft applications. On a gas test stand the turbocharger was operated to 120,000 rpm, under extreme conditions. In addition, the compliant foil bearing-supported turbocharger successfully tolerated shock and vibration of 40 g. Advanced technologies have been applied to the second generation of this turbocharger, shown in Figure 1, including self acting, compliant foil hydrodynamic air bearings with advanced coatings capable, of operation above 815 °C (1500°F). Journal foil bearings with maximum load capacity up to 670 kPa (97 psi) were used in conjunction with thrust foil bearings capable of maximum loads to 570 kPa (83 psi). Bearing component development tests demonstrated 30,000 start stop cycles at 815 °C (1500°F) with a newly developed, solid lubricant coating, KOROLON™. KOROLON™ exhibits a coefficient of friction of less than 0.1 at a wide range of temperatures. Current-designed foil bearings with KOROLON™ have immensely decreased turbolag, allowing acceleration from rest to over 100,000 rpm in less than 2 seconds. Advanced bearing stiffness maintained rotor total axial end-to-end motion within 100 microns (0.004 inch). Total radial static and dynamic motion was controlled within 25 microns (0.001 inch). Development of this high speed turbomachine included bearing and solid lubricant component development tests, rotor-bearing dynamic simulator qualification and gas stand tests of the assembled turbocharger. Gas stand and simulator test results revealed stable bearing temperatures, low rotor vibrations, good shock tolerance and the ability of the rotor bearing system to sustain overspeed conditions beyond 120,000 rpm. This combination of component and integrated rotor-bearing system technology addresses many of the issues associated with application of compliant foil bearings to industrial compressors, blowers, and gas turbine engines, overcoming many of the inherently show-stopping and debilitating features of rolling element bearings, i.e., speed and temperature limitations.


Author(s):  
Bok Seong Choe ◽  
Tae Ho Kim ◽  
Chang Ho Kim ◽  
Yong Bok Lee

This paper presents the dynamic behavior of a 225 kW class (300 HP), 60,000 rpm, permanent magnet synchronous (PMS) motor–generator system supported on gas foil bearings (GFBs). The rotor of a 225 kW PMS motor is supported by two identical gas foil journal bearings (GFJBs) and one pair of gas foil thrust bearings (GFTBs). The total weight and axial length of the coupled rotors are 272 N and 1042 mm, respectively. During the speed-up test to 60,000 rpm, unexpected large subsynchronous rotor motions appear at around 120–130 Hz above 35,040 rpm. After disassembling the motor, an inspection of the top foils of the GFJBs reveals significant rotor rubbing. Thus, the GFJBs are redesigned to have a smaller load capacity by reducing their axial length to 45 mm. In addition, three 50 μm thick shims are installed in the GFJBs at 120 deg intervals for reducing the swirl speed of air and producing bearing preloads. The modification delays the onset speed of subsynchronous motions to 43,200 rpm and decreases the amplitude of the subsynchronous motions from 20 to 15 μm. These results indicate that the modification improves the stability margin of the high-speed rotor system with increasing stiffness and damping. In addition, the logarithmic decrement trends are in good agreement with the test results.


Author(s):  
Nguyen LaTray ◽  
Daejong Kim

This work presents the theoretical and experimental rotordynamic evaluations of a rotor-air foil bearing system supporting a large overhung mass for high speed application. The proposed system highlights the compact design of a single shaft rotor configuration with turbomachine components arranged on one side of the bearing span. In this work, low speed tests up to 45krpm are performed to measure the lift off speed and to check the bearing manufacturing quality. Rotordynamic performance at high speeds is evaluated both analytically and experimentally. In the analytical approach, simulated imbalance responses are studied using both rigid and flexible shaft models with bearing forces calculated from transient Reynolds equation along with rotor motion. The simulation predicts that the system experiences small synchronous rigid mode vibration at 20krpm and bending mode at 200krpm. A high speed test rig is designed to experimentally evaluate the rotor-air foil bearings system. The high speed tests are operated up to 160krpm. The vibration spectrum indicates that the rotor-air foil bearing system operates under stable conditions. The experimental waterfall plots also show very small sub-synchronous vibrations with frequency locked to the system natural frequency. Overall, this work demonstrates the potential capability of air foil bearings in supporting a shaft with a large overhung mass at high speed.


Author(s):  
Hooshang Heshmat ◽  
James F. Walton ◽  
Crystal A. Heshmat

The expanded application of high-speed rotor systems operating on compliant foil bearings will be greatly enhanced with the ability to adequately couple multiple shaft systems with differing bearing systems and dynamic performance. In this paper the results of an analytical tradeoff study assessing coupling dynamic characteristics and their impact on coupled rotor-bearing system dynamics are presented. This analysis effort was completed in an effort to establish the form of characteristics needed to couple foil bearing supported rotors to ball bearing supported rotors, other foil bearing supported rotors as well as coupling rigid and flexible rotors both supported on foil bearings. The conclusions from this study indicate that with appropriate coupling design, a wide array of foil bearing supported rotor systems may be successfully coupled.


Author(s):  
Bok Seong Choe ◽  
Tae Ho Kim ◽  
Chang Ho Kim ◽  
Yong Bok Lee

This paper presents the dynamic behavior of a 225 kW class (300 HP), 60,000 rpm, permanent magnet synchronous (PMS) motor-generator system supported on gas foil bearings (GFBs). The rotor of a 225 kW PMS motor is supported by two identical gas foil journal bearings (GFJBs) and one pair of gas foil thrust bearings (GFTBs). The total weight and axial length of the coupled rotors are 272 N and 1,042 mm, respectively. During the speed-up test to 60,000 rpm, unexpected large subsynchronous rotor motions appear at around 120–130 Hz above 35,040 rpm. After disassembling the motor, an inspection of the top foils of the GFJBs reveals significant rotor rubbing. Thus, the GFJBs are redesigned to have a smaller load capacity by reducing their axial length to 45 mm. In addition, three 50 μm thick shims are installed in the GFJBs at 120° intervals for reducing the swirl speed of air and producing bearing preloads. The modification delays the onset speed of subsynchronous motions to 43,200 rpm and decreases the amplitude of the subsynchronous motions from 20 to 15 μm. These results indicate that the modification improves the stability margin of the high-speed rotor system with increasing stiffness and damping. In addition, the logarithmic decrement trends are in good agreement with the test results.


1969 ◽  
Vol 91 (3) ◽  
pp. 477-493 ◽  
Author(s):  
L. Licht

A high-speed rotor, supported by an air-lubricated foil bearing, is rotated in both the vertical and horizontal attitudes at speeds in excess of 60,000 rpm. The rotor is stable and free from “half-frequency” or “fractional-frequency” whirl instability encountered in conventional gas bearings. External pressurization is applied to separate the foil surfaces from the journal during the initial and final stages of rotation, with adequate self-acting support and foil separation established at relatively low transition speeds. In the pressurized mode of operation, the system is characterized by a series of ultra-harmonic resonances, of sharply defined frequencies, related by fractions to speeds of synchronous resonance. In the self-acting mode of operation, the response of the system to residual imbalance is influenced by both the foil bearing and by the pressurized thrust bearings. The magnitude of the air gap (clearance) is determined at various rotational speeds and compared with theoretically predicted results. The temperature rise of the foil with speed is measured at various locations in order to assess its contribution to clearance growth. The journal and foil surfaces are examined and it is found that the foil bearing is endowed with excellent wipe-wear characteristics.


Author(s):  
Michael J. Tomaszewski ◽  
James F. Walton ◽  
Hooshang Heshmat

The expanded application of high-speed rotor systems operating on compliant foil bearings will be greatly enhanced with the ability to adequately couple multiple shaft systems with differing bearing systems and dynamic performance. In this paper the results of a successful experimental program are presented. Test results are presented for three different foil bearing coupled rotor systems. First, a coupled 32 kW, 60,000 rpm induction motor drive supported on compliant foil bearings was coupled to an identical 32 kW 60,000 rpm generator rotor and operated to full speed. Next, a high-speed 30,000 rpm capable ball bearing mounted precision spindle was driven to full speed when coupled to a 32 kW foil bearing supported drive motor. Third, the 32 kW, 60,000 rpm foil bearing based motor drive was coupled to a foil bearing supported rotor having a bending critical speed at approximately 29,000 rpm. This combined system was operated successfully to 60,000 rpm. Results of this experimental test program confirm the rotor-bearing system dynamic analysis and demonstrate the feasibility of coupling foil bearing supported rotors to a wide array of other rotor-bearing systems.


Author(s):  
Jiale Tian ◽  
Baisong Yang ◽  
Sheng Feng ◽  
Lie Yu ◽  
Jian Zhou

In this study, an ultra-high-speed rotor–gas foil-bearing system is designed and applied to a permanent magnet synchronous motor. Gas foil journal bearings and gas foil thrust bearings are used to provide journal and axial support to the rotor, respectively. The bearings are analyzed theoretically considering the nonlinear deflection of the top foil, and the static and dynamic characteristics are obtained with which the rotor dynamic performances of the tested rotor are calculated using the finite element method. During the experiment, the permanent magnet synchronous motor can operate stably at 94,000 r/min, which demonstrates a great dynamic performance of the gas foil bearings and the stability that it provides to the entire system. The sub-synchronous vibration also occurs when the rotating speed reaches 60,000 r/min and as the speed keeps rising, the amplitude of such vibration increases, which will contribute to the destabilization of the rotor–gas foil-bearing system. Finally, the axial force of the rotor is calculated theoretically as well as measured directly by four micro force sensors mounted in the thrust end cover of the permanent magnet synchronous motor. The experimental results presented in this article are expected to provide a useful guide to the design and analysis of the rotor–gas foil-bearing system and high-speed permanent magnet synchronous motor.


Sign in / Sign up

Export Citation Format

Share Document