scholarly journals Epigenetics and Oxidative Stress in Aging

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Amy Guillaumet-Adkins ◽  
Yania Yañez ◽  
Manuel D. Peris-Diaz ◽  
Ines Calabria ◽  
Cora Palanca-Ballester ◽  
...  

Aging is a multifactorial process characterized by the progressive loss of physiological functions, leading to an increased vulnerability to age-associated diseases and finally to death. Several theories have been proposed to explain the nature of aging. One of the most known identifies the free radicals produced by the mitochondrial metabolism as the cause of cellular and DNA damage. However, there are also several evidences supporting that epigenetic modifications, such as DNA methylation, noncoding RNAs, and histone modifications, play a critical role in the molecular mechanism of aging. In this review, we explore the significance of these findings and argue how the interlinked effects of oxidative stress and epigenetics can explain the cause of age-related declines.

2019 ◽  
Vol 20 (S1) ◽  
Author(s):  
Camila F. A. Giordani ◽  
Sarah Campanharo ◽  
Nathalie R. Wingert ◽  
Lívia M. Bueno ◽  
Joanna W. Manoel ◽  
...  

Abstract Background The presence of impurities in some drugs may compromise the safety and efficacy of the patient’s treatment. Therefore, establishing of the biological safety of the impurities is essential. Diabetic patients are predisposed to tissue damage due to an increased oxidative stress process; and drug impurities may contribute to these toxic effects. In this context, the aim of this work was to study the toxicity, in 3 T3 cells, of the antidiabetic agents sitagliptin, vildagliptin, and their two main impurities of synthesis (S1 and S2; V1 and V2, respectively). Methods MTT reduction and neutral red uptake assays were performed in cytotoxicity tests. In addition, DNA damage (measured by comet assay), intracellular free radicals (by DCF), NO production, and mitochondrial membrane potential (ΔψM) were evaluated. Results Cytotoxicity was observed for impurity V2. Free radicals generation was found at 1000 μM of sitagliptin and 10 μM of both vildagliptin impurities (V1 and V2). A decrease in NO production was observed for all vildagliptin concentrations. No alterations were observed in ΔψM or DNA damage at the tested concentrations. Conclusions This study demonstrated that the presence of impurities might increase the cytotoxicity and oxidative stress of the pharmaceutical formulations at the concentrations studied.


2021 ◽  
pp. 48-58
Author(s):  
A. P. Pereverzev ◽  
R. R. Romanovskii ◽  
N. A. Shatalova ◽  
O. D. Ostroumova

According to the theory of inflammaging, aging of the body and the development of age-related diseases are a consequence of a chronic progressive generalized inflammatory process that develops and persists throughout life under the influence of negative factors of an infectious and non-infectious nature. Inflammaging has a number of features that distinguish it from acute inflammation: a chronic nature of inflammation, a low level of inflammation, blurry clinical state (in the early stages of clinical manifestations there may not be any at all). The key pathogenetic role in inflammation plays age-associated changes in the innate immune system, which are referred to in the English literature as “immunosenescence” and oxidative stress. The main source of reactive oxygen species and free radicals in the cells are mitochondria. With age, the concentration of intracellular glutathione, one of the main factors of the antioxidant protection of the cell, decreases and a pathological condition arises in which the rate of production of free radicals and reactive oxygen species significantly exceeds the antioxidant capabilities, which leads to the formation of oxidative stress and disruption of the structure and function of cells. Oxidative stress, inflammation and neuroinflammation are closely related to cognitive impairment, pathological state that is often observed in a group of elderly and senile patients. Further study of the pathogenesis of Inflammaging and the role of oxidative stress in it will potentially lead to development of methods to slow down aging and treat age-related cognitive impairments.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
M. Garrido ◽  
M. P. Terrón ◽  
A. B. Rodríguez

Free radicals and oxidative stress have been recognized as important factors in the biology of aging and in many age-associated degenerative diseases. Antioxidant systems deteriorate during aging. It is, thus, considered that one way to reduce the rate of aging and the risk of chronic disease is to avoid the formation of free radicals and reduce oxidative stress by strengthening antioxidant defences. Phytochemicals present in fruits, vegetables, grains, and other foodstuffs have been linked to reducing the risk of major oxidative stress-induced diseases. Some dietary components of foods possess biological activities which influence circadian rhythms in humans. Chrononutrition studies have shown that not only the content of food, but also the time of ingestion contributes to the natural functioning of the circadian system. Dietary interventions with antioxidant-enriched foods taking into account the principles of chrononutrition are of particular interest for the elderly since they may help amplify the already powerful benefits of phytochemicals as natural instruments with which to prevent or delay the onset of common age-related diseases.


2019 ◽  
Vol 24 (40) ◽  
pp. 4726-4741 ◽  
Author(s):  
Orathai Tangvarasittichai ◽  
Surapon Tangvarasittichai

Background: Oxidative stress is caused by free radicals or oxidant productions, including lipid peroxidation, protein modification, DNA damage and apoptosis or cell death and results in cellular degeneration and neurodegeneration from damage to macromolecules. Results: Accumulation of the DNA damage (8HOdG) products and the end products of LPO (including aldehyde, diene, triene conjugates and Schiff’s bases) were noted in the research studies. Significantly higher levels of these products in comparison with the controls were observed. Oxidative stress induced changes to ocular cells and tissues. Typical changes include ECM accumulation, cell dysfunction, cell death, advanced senescence, disarrangement or rearrangement of the cytoskeleton and released inflammatory cytokines. It is involved in ocular diseases, including keratoconus, Fuchs endothelial corneal dystrophy, and granular corneal dystrophy type 2, cataract, age-related macular degeneration, primary open-angle glaucoma, retinal light damage, and retinopathy of prematurity. These ocular diseases are the cause of irreversible blindness worldwide. Conclusions: Oxidative stress, inflammation and autophagy are implicated in biochemical and morphological changes in these ocular tissues. The development of therapy is a major target for the management care of these ocular diseases.


2019 ◽  
Vol 22 (7) ◽  
pp. 496-501
Author(s):  
Fatemeh Ahmadi-Motamayel ◽  
Parisa Falsafi ◽  
Hamidreza Abolsamadi ◽  
Mohammad T. Goodarzi ◽  
Jalal Poorolajal

Background: Cigarette smoke free radicals can cause cellular damage and different diseases. All the body fluids have antioxidants which protect against free radicals. Objective: The aim of this study was to evaluate salivary total antioxidant capacity and peroxidase, uric acid and malondialdehyde levels in smokers and a nonsmoking control group. Methods: Unstimulated saliva was collected from 510 males. A total of 259 subjects were current smokers and 251 were non-smokers. The levels of salivary total antioxidant capacity, uric acid, peroxidase and malondialdehyde were measured using standard procedures. Data were analyzed with t test and ANOVA. Results: The smokers were younger and dental hygiene index was higher than healthy nonsmoking controls. The mean total antioxidant capacity in smokers and nonsmokers was 0.13±0.07 and 0.21±011, respectively (P=0.001). Smokers had significantly lower peroxidase and uric acid levels than healthy controls. In addition, the mean malondialdehyde levels in the smokers and nonsmokers were 4.55 ±2.61 and 2.79 ±2.21, respectively (P=0.001). Conclusion: Cigarette smoke produces free radical and oxidative stress, causing many side effects. Salivary antioxidant levels decreased and malondialdehyde levels increased in smokers, indicating the high oxidative stress among smokers compared to nonsmokers. Cigarette smoke had deleterious effects on main salivary antioxidants levels.


2020 ◽  
Vol 17 (4) ◽  
pp. 394-401
Author(s):  
Yuanhua Wu ◽  
Yuan Huang ◽  
Jing Cai ◽  
Donglan Zhang ◽  
Shixi Liu ◽  
...  

Background: Ischemia/reperfusion (I/R) injury involves complex biological processes and molecular mechanisms such as autophagy. Oxidative stress plays a critical role in the pathogenesis of I/R injury. LncRNAs are the regulatory factor of cerebral I/R injury. Methods: This study constructs cerebral I/R model to investigate role of autophagy and oxidative stress in cerebral I/R injury and the underline regulatory mechanism of SIRT1/ FOXO3a pathway. In this study, lncRNA SNHG12 and FOXO3a expression was up-regulated and SIRT1 expression was down-regulated in HT22 cells of I/R model. Results: Overexpression of lncRNA SNHG12 significantly increased the cell viability and inhibited cerebral ischemicreperfusion injury induced by I/Rthrough inhibition of autophagy. In addition, the transfected p-SIRT1 significantly suppressed the release of LDH and SOD compared with cells co-transfected with SIRT1 and FOXO3a group and cells induced by I/R and transfected with p-SNHG12 group and overexpression of cells co-transfected with SIRT1 and FOXO3 further decreased the I/R induced release of ROS and MDA. Conclusion: In conclusion, lncRNA SNHG12 increased cell activity and inhibited oxidative stress through inhibition of SIRT1/FOXO3a signaling-mediated autophagy in HT22 cells of I/R model. This study might provide new potential therapeutic targets for further investigating the mechanisms in cerebral I/R injury and provide.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 802
Author(s):  
Teresa Vezza ◽  
Aranzazu M. de Marañón ◽  
Francisco Canet ◽  
Pedro Díaz-Pozo ◽  
Miguel Marti ◽  
...  

Type 2 diabetes is a chronic disease widespread throughout the world, with significant human, social, and economic costs. Its multifactorial etiology leads to persistent hyperglycemia, impaired carbohydrate and fat metabolism, chronic inflammation, and defects in insulin secretion or insulin action, or both. Emerging evidence reveals that oxidative stress has a critical role in the development of type 2 diabetes. Overproduction of reactive oxygen species can promote an imbalance between the production and neutralization of antioxidant defence systems, thus favoring lipid accumulation, cellular stress, and the activation of cytosolic signaling pathways, and inducing β-cell dysfunction, insulin resistance, and tissue inflammation. Over the last few years, microRNAs (miRNAs) have attracted growing attention as important mediators of diverse aspects of oxidative stress. These small endogenous non-coding RNAs of 19–24 nucleotides act as negative regulators of gene expression, including the modulation of redox signaling pathways. The present review aims to provide an overview of the current knowledge concerning the molecular crosstalk that takes place between oxidative stress and microRNAs in the physiopathology of type 2 diabetes, with a special emphasis on its potential as a therapeutic target.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 507
Author(s):  
Rosaria Meccariello ◽  
Stefania D’Angelo

Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.


Author(s):  
Pollyanna Francielli De Oliveira ◽  
Luis Fernando Leandro ◽  
Ricardo Andrade Furtado ◽  
Natália Helen Ferreira ◽  
Patrícia Mendonça Pauletti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document