scholarly journals The Designing of Magnetic-Driven Micromirror for Portable FTIRs

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Shaoxi Wang ◽  
Xuan Yuan

Fourier transform infrared spectroscopy is a widely used instrument to analyze and test different materials including organic and inorganic. Most of current commercial Fourier transform infrared spectrometers are limited in miniaturization and scanning velocity by their macroscopic components. MEMS FTIR spectroscopy is one of the important applications of translational actuator-driven systems by using MEMS technology. The critical component in MEMS FTIRs is the large displacement translating micromirror and its actuator. The paper presents a large displacement and high-surface quality micromirror. The micromirror consists of a micromagnetic actuator and a micromirror plate. The mirror plate and the actuator are fabricated separately and bonded together afterwards, and its size is 3.6 × 3.6 mm2 high-surface quality square mirror plate and a 1cm2 moving part. The microactuator’s moving part is fabricated using MetalMUMPS, and its fixed part includes a ring permanent magnet and a solenoid to realize a large displacement. The mirror plate is fabricated using polished silicon coated with metal layer with high-surface prototypes that are fabricated and experimentally tested. A maximum stroke of 400 μm has been achieved in pull-in whereas only 140 μm stroke have been measured for a 4 to 5-volt DC-controlled displacement, and the resonance frequency is 10 Hz.

2021 ◽  
Author(s):  
Farzana Husain

The objective of this thesis is to design MEMS magnetic actuator for MEMS FTIRS. The actuator consists of moving part and fixed part. The moving part uses rotation-to-translation motion conversion mechanism to achieve large translation, which includes four trapezoidal plates, central ring, anchoring springs and connection springs. The fixed part of the actuator consists of four solenoids. The actuator can be integrated with separately fabricated micromirror plate to achieve high surface quality translation micromirror for FTIRS. The actuator is capable of eliminating titling by controlling the four solenoids individually. The MEMS magnetic actuator has been designed and simulated to be able to output a static displacement of 370micrometers. The stress has been analyzed for the moving part of the actuator. The actuator fixed part has been designed. Dynamic analysis has been conducted for the moving part of the actuator. The moving part of the actuator has been fabricated using MetalMUMPs.


2021 ◽  
Author(s):  
Yuan Xue

Miniaturized FTIR spectrometer has been developed rapidly in recent years due to the increasing demands. MEMS micromirrors have been used to replace the movable mirror system, which is the largest part in conventional FTIRs. Electromagnetic actuators are suitable to drive the micromirrors because of their relatively large quasi-static translation range and high response speed. In addition, high surface quality is required for the micromirror. However, current MEMS based micromachining technologies cannot provide satisfactory surface quality. Therefore, a translation mircomirror with a large displacement, i.e., > 120 µm, and a novel magnetic field pulling-force assisted bonding technology are developed to bond a high surface quality (i.e., roughness of 2 nm and radius curvature over 15 m) mirror plate with a released microactuator using an adhesive. However, the touching points between the moving film and the substrate lead to a large starting position variation and low repeatability in operation. To solve these limitations, a repulsive force based translation micromirror utilizes a novel driving mechanism, i.e., permanent magnet ring above and electromagnet underneath the moving film, to lift and push the moving film away from the substrate for translation. As a result, the starting position of the repulsive force translating mirror is consistent and the repeatability is <1%. A maximum displacement of 144 µm can be achieved when a 140 mA current is applied. To eliminate the tilt of the translation micromirror during motion, a compensation system is developed which includes the translation mirror, a correcting mirror and a reflecting mirror. The correcting micromirror corrects the tilt by rotating the same angle as the translation micromirror with its rotating axis parallel to the tilting axis. The tilt of the attractive force translation micromirror can be reduced to 0.026° after compensation, so it can be used as a movable mirror in FTIRs to measure half of the midinfrared region between 13.6 µm an 25 µm. Therefore, the electromagnetic actuator based translation micromirror with large displacement, high surface quality can be successfully used as the movable mirror in the miniaturized FTIRs with the tilt compensation system.


2021 ◽  
Author(s):  
Yuan Xue

Miniaturized FTIR spectrometer has been developed rapidly in recent years due to the increasing demands. MEMS micromirrors have been used to replace the movable mirror system, which is the largest part in conventional FTIRs. Electromagnetic actuators are suitable to drive the micromirrors because of their relatively large quasi-static translation range and high response speed. In addition, high surface quality is required for the micromirror. However, current MEMS based micromachining technologies cannot provide satisfactory surface quality. Therefore, a translation mircomirror with a large displacement, i.e., > 120 µm, and a novel magnetic field pulling-force assisted bonding technology are developed to bond a high surface quality (i.e., roughness of 2 nm and radius curvature over 15 m) mirror plate with a released microactuator using an adhesive. However, the touching points between the moving film and the substrate lead to a large starting position variation and low repeatability in operation. To solve these limitations, a repulsive force based translation micromirror utilizes a novel driving mechanism, i.e., permanent magnet ring above and electromagnet underneath the moving film, to lift and push the moving film away from the substrate for translation. As a result, the starting position of the repulsive force translating mirror is consistent and the repeatability is <1%. A maximum displacement of 144 µm can be achieved when a 140 mA current is applied. To eliminate the tilt of the translation micromirror during motion, a compensation system is developed which includes the translation mirror, a correcting mirror and a reflecting mirror. The correcting micromirror corrects the tilt by rotating the same angle as the translation micromirror with its rotating axis parallel to the tilting axis. The tilt of the attractive force translation micromirror can be reduced to 0.026° after compensation, so it can be used as a movable mirror in FTIRs to measure half of the midinfrared region between 13.6 µm an 25 µm. Therefore, the electromagnetic actuator based translation micromirror with large displacement, high surface quality can be successfully used as the movable mirror in the miniaturized FTIRs with the tilt compensation system.


Author(s):  
Lukas Seeholzer ◽  
Stefan Süssmaier ◽  
Fabian Kneubühler ◽  
Konrad Wegener

AbstractEspecially for slicing hard and brittle materials, wire sawing with electroplated diamond wires is widely used since it combines a high surface quality with a minimum kerf loss. Furthermore, it allows a high productivity by machining multiple workpieces simultaneously. During the machining operation, the wire/workpiece interaction and thus the material removal conditions with the resulting workpiece quality are determined by the material properties and the process and tool parameters. However, applied to machining of carbon fibre reinforced polymers (CFRP), the process complexity potentially increases due to the anisotropic material properties, the elastic spring back potential of the material, and the distinct mechanical wear due to the highly abrasive carbon fibres. Therefore, this experimental study analyses different combinations of influencing factors with respect to process forces, workpiece surface temperatures at the wire entrance, and the surface quality in wire sawing unidirectional CFRP material. As main influencing factors, the cutting and feed speeds, the density of diamond grains on the wire, the workpiece thickness, and the fibre orientation of the CFRP material are analysed and discussed. For the tested parameter settings, it is found that while the influence of the grain density is negligible, workpiece thickness, cutting and feed speeds affect the process substantially. In addition, higher process forces and workpiece surface temperatures do not necessarily deteriorate the surface quality.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 75
Author(s):  
Nikolaos E. Karkalos ◽  
Panagiotis Karmiris-Obratański ◽  
Szymon Kurpiel ◽  
Krzysztof Zagórski ◽  
Angelos P. Markopoulos

Surface quality has always been an important goal in the manufacturing industry, as it is not only related to the achievement of appropriate geometrical tolerances but also plays an important role in the tribological behavior of the surface as well as its resistance to fatigue and corrosion. Usually, in order to achieve sufficiently high surface quality, process parameters, such as cutting speed and feed, are regulated or special types of cutting tools are used. In the present work, an alternative strategy for slot milling is adopted, namely, trochoidal milling, which employs a more complex trajectory for the cutting tool. Two series of experiments were initially conducted with traditional and trochoidal milling under various feed and cutting speed values in order to evaluate the capabilities of trochoidal milling. The findings showed a clear difference between the two milling strategies, and it was shown that the trochoidal milling strategy is able to provide superior surface quality when the appropriate process parameters are also chosen. Finally, the effect of the depth of cut, coolant and trochoidal stepover on surface roughness during trochoidal milling was also investigated, and it was found that lower depths of cut, the use of coolant and low values of trochoidal stepover can lead to a considerable decrease in surface roughness.


2017 ◽  
Vol 36 (3) ◽  
pp. 151-166 ◽  
Author(s):  
Christian Hopmann ◽  
Nicolai Lammert ◽  
Yuxiao Zhang

Thermoplastic foam injection moulding offers various advantages for both processing and product design. Despite its many benefits, the moderate surface quality still constitutes a major disadvantage of this process. The mould temperature can be controlled dynamically to improve the surface quality. Different dynamic temperature control strategies are employed and analysed regarding their effectiveness and scope of application. Mould temperatures above the specific material transition temperatures allow the surface defects to be cured and enable the production of foamed thermoplastic parts with surface qualities comparable to those of the compact reference samples. The high mould temperatures during the injection phase alter the foam structure and the skin layer thicknesses, which impacts the mechanical properties.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 325
Author(s):  
Muslim Mahardika ◽  
Martin Andre Setyawan ◽  
Tutik Sriani ◽  
Norihisa Miki ◽  
Gunawan Setia Prihandana

Titanium is widely used in biomedical components. As a promising advanced manufacturing process, electropolishing (EP) has advantages in polishing the machined surfaces of material that is hard and difficult to cut. This paper presents the fabrication of a titanium microchannel using the EP process. The Taguchi method was adopted to determine the optimal process parameters by which to obtain high surface quality using an L9 orthogonal array. The Pareto analysis of variance was utilized to analyze the three machining process parameters: applied voltage, concentration of ethanol in an electrolyte solution, and machining gap. In vitro experiments were conducted to investigate the fouling effect of blood on the microchannel. The result shows that an applied voltage of 20 V, an ethanol concentration of 20 vol.%, and a machining gap of 10 mm are the optimum machining parameters by which to enhance the surface quality of a titanium microchannel. Under the optimized machining parameters, the surface quality improved from 1.46 to 0.22 μm. Moreover, the adhesion of blood on the surface during the fouling experiment was significantly decreased, thus confirming the effectiveness of the proposed method.


2014 ◽  
Vol 1018 ◽  
pp. 269-276
Author(s):  
Andrea Reiß ◽  
Ulf Engel

With cold forging processes it is possible to produce parts characterized by high strength, high dimensional accuracy and high surface quality. In order to optimize the forming process and to be able to use the advantages of cold forging specifically and combined, it is necessary to find correlations between manufacturing parameters on the one side, strength and other properties like hardness distribution and surface quality of the component on the other side. The research work covered in this paper focuses on the correlation of the components properties influenced by its manufacturing history and their fatigue strength. The used component is a gear produced by a lateral cold forging process. For the investigations an experimental setup has been designed. The aim for the design of the setup is to reproduce the real contact condition for the contact of two gears. To obtain different component properties the production process of the gear was varied by producing the parts by a milling operation. First of all, the components’ properties, for example hardness distribution, remaining residual stresses, orientation of fibers and surface quality, were determined. The components’ fatigue behavior was determined using a high frequency pulsator and evaluated in terms of finite life fatigue strength and fatigue endurance limit. These examinations were used to produce Woehler curves for the differently manufactured components with a certain statistical data analysis method.


Sign in / Sign up

Export Citation Format

Share Document