scholarly journals Punicalagin Decreases Serum Glucose Levels and Increases PON1 Activity and HDL Anti-Inflammatory Values in Balb/c Mice Fed a High-Fat Diet

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Dana Atrahimovich ◽  
Abraham O. Samson ◽  
Ali Khattib ◽  
Jacob Vaya ◽  
Soliman Khatib

Polyphenols are consumed daily in the human diet and are associated with reduced risk of a number of chronic diseases, including cancer, cardiovascular disease, and diabetes. Traditionally, the health benefits of polyphenols have been attributed to their antioxidant activity, but many studies might be hampered by oral administration and insignificant bioavailability. Rather than exerting a direct antioxidant effect, the mechanisms by which polyphenols express their beneficial effect seem to involve their interaction with proteins. The present study is aimed at broadening and confirming our recently published in vitro results showing that polyphenols may reduce atherosclerosis risk via interaction with proteins and lipoproteins related to atherosclerosis. The biological functions of punicalagin and quercetin in relation to glucose and lipid levels, paraoxonase 1 (PON1) activity, and inflammation were examined in vivo. Mice were fed a high-fat diet (HFD) for 12 weeks, and during the last 4 weeks, they received subcutaneous treatments via implanted minipumps, which released physiological concentrations of punicalagin, quercetin, or atorvastatin (as a positive control) daily into the serum. The HFD reduced serum PON1 activity, whereas punicalagin administration restored PON1 activity to the level of mice fed a normal diet. In addition, punicalagin significantly reduced glucose levels in HFD mice and improved HDL anti-inflammatory properties. In conclusion, beyond antioxidant activity, the mechanisms by which polyphenols exert their beneficial properties appear to involve their interaction with serum proteins that mediate HDL function and lipid-glucose state in the circulation.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Mi-Bo Kim ◽  
Changhee Kim ◽  
Youngwoo Song ◽  
Jae-Kwan Hwang

Xanthorrhizol, a natural compound isolated fromCurcuma xanthorrhizaRoxb. (Java turmeric), has been reported to possess antioxidant and anticancer properties; however, its effects on metabolic disorders remain unknown. The aim of the present study was to evaluate the effects of xanthorrhizol (XAN) andC. xanthorrhizaextract (CXE) with standardized XAN on hyperglycemia and inflammatory markers in high-fat diet- (HFD-) induced obese mice. Treatment with XAN (10 or 25 mg/kg/day) or CXE (50 or 100 mg/kg/day) significantly decreased fasting and postprandial blood glucose levels in HFD-induced obese mice. XAN and CXE treatments also lowered insulin, glucose, free fatty acid (FFA), and triglyceride (TG) levels in serum. Epididymal fat pad and adipocyte size were decreased by high doses of XAN (26.6% and 20.1%) and CXE (25.8% and 22.5%), respectively. XAN and CXE treatment also suppressed the development of fatty liver by decreasing liver fat accumulation. Moreover, XAN and CXE significantly inhibited production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1β(IL-1β), and C-reactive protein (CRP) in adipose tissue (27.8–82.7%), liver (43.9–84.7%), and muscle (65.2–92.5%). Overall, these results suggest that XAN and CXE, with their antihyperglycemic and anti-inflammatory activities, might be used as potent antidiabetic agents for the treatment of type 2 diabetes.


2019 ◽  
Author(s):  
Jiansheng Huang ◽  
Patricia G. Yancey ◽  
Huan Tao ◽  
Mark Borja ◽  
Loren Smith ◽  
...  

AbstractHigh-density lipoprotein (HDL) is atheroprotective by mediating cholesterol efflux, anti-inflammatory, and anti-oxidation functions. Atheroprotective functions of HDL are related to the activity of HDL-associated enzymes such as paraoxonase 1 (PON1). We examined the impact of inhibition of myeloperoxidase (MPO)-mediated HDL oxidation by PON1 on HDL malondialdehyde (MDA) content and HDL function. In the presence of PON1, crosslinking of apoAI in response to MPO-mediated oxidation of HDL was abolished and MDA-HDL adduct levels were decreased. In addition, PON1 prevented the impaired cholesterol efflux capacity of MPO-oxidized HDL from Apoe-/- macrophages. Direct modification of HDL with MDA increased apoAI crosslinking and reduced the cholesterol efflux capacity in a dose dependent manner. In addition, MDA modification of HDL reduced its anti-inflammatory function compared to native HDL as the expression of IL-1β and IL6 increased by 3-(p<0.05) and 1.8-fold (p<0.05) in Apoe-/- macrophages in response to LPS. MDA-HDL also had impaired ability to increase PON1 activity. Importantly, HDL from subjects with familial hypercholesterolemia (FH-HDL) versus controls had increased MDA-apoAI adducts, and normalization of the PON1 activity to PON1 mass revealed a 24 % (p<0.05) decrease in specific activity indicating that PON1 activity is also impaired in FH. Consistent with the impaired PON1 activity and increased MDA-apoAI, FH-HDL induced a pro-inflammatory response in Apoe-/- macrophages compared to incubation with LPS alone. FH-HDL versus control HDL also had an impaired ability to promote cholesterol efflux from Apoe-/- macrophages. Interestingly, reactive dicarbonyl scavengers effectively abolished MPO-mediated apoAI crosslinking, MDA adduct formation, and improved cholesterol efflux capacity. Importantly, in vivo treatment of hypercholesterolemic mice with reactive dicarbonyl scavengers effectively reduced MDA-HDL adduct formation and increased PON1 activity and HDL cholesterol efflux capacity, supporting a therapeutic potential of reactive carbonyl scavenging in maintaining HDL function.


Author(s):  
Hyunju Jeong ◽  
Chanju Lee ◽  
Chenyu Cheng ◽  
Hung Chun Chou ◽  
HyeJin Yang ◽  
...  

Abstract Background/objectives Adipose tissue macrophages (ATMs) exist in either the M1 or M2 form. The anti-inflammatory M2 ATMs accumulate in lean individuals, whereas the pro-inflammatory M1 ATMs accumulate in obese individuals. Bee venom phospholipase A2 (bvPLA2), a major component in honeybee (Apis mellifera) venom, exerts potent anti-inflammatory effects via interactions with regulatory T cells (Treg) and macrophages. This study investigated the effects of bvPLA2 on a high-fat diet (HFD)-induced obesity in mice. Subjects/methods For in vivo experiments, male C57BL/6, CD206-deficient, and Treg-depleted mice models were fed either a normal diet 41.86 kJ (ND, 10 kcal% fat) or high-fat diet 251.16 kJ (HFD, 60 kcal% fat). Each group was i.p. injected with PBS or bvPLA2 (0.5 mg/kg) every 3 days for 11 weeks. Body weight and food intake were measured weekly. Histological changes in the white adipose tissue (WAT), liver, and kidney as well as the immune phenotypes of the WAT were examined. Immune cells, cytokines, and lipid profiles were also evaluated. The direct effects of bvPLA2 on 3T3-L1 pre-adipocytes and bone marrow-derived macrophages were measured in vitro. Results bvPLA2 markedly decreased bodyweight in HFD-fed mice. bvPLA2 treatment also decreased lipid accumulation in the liver and reduced kidney inflammation in the mice. It was confirmed that bvPLA2 exerted immunomodulatory effects through the CD206 receptor. In addition, bvPLA2 decreased M1 ATM and alleviated the M1/M2 imbalance in vivo. However, bvPLA2 did not directly inhibit adipogenesis in the 3T3-L1 adipose cells in vitro. Conclusions bvPLA2 is a potential therapeutic strategy for the management of obesity by regulating adipose tissue macrophage homeostasis.


2020 ◽  
Vol 17 (10) ◽  
pp. 1126-1138
Author(s):  
Anawat KONGCHIAN ◽  
Narissara KEAWBOONLERT ◽  
Thanchanok BOONRAK ◽  
Sarai LOOKYEE ◽  
Krittiyaporn BUASRI ◽  
...  

Hyperlipidemia and obesity are risk factors that contribute to cardiovascular diseases, diabetes, and hypertension among the world’s population. The present study aimed to investigate the effects of green tea (Camellia sinesis) and Garcinia (Garcinia atroviridis) extracts in high-fat diet mice. The mice were fed with a high-fat diet and orally administrated extracts once daily. The extracts displayed a significant decrease in body weight, triglyceride, low-density lipoprotein (LDL) cholesterol, total cholesterol, atherosclerosis index (AI), and glucose levels in blood. High-density lipoprotein (HDL) cholesterol significantly increased. Treatment with the extracts reduced the lipid peroxidation marker, malondialdehyde (MDA), and indicated the pathohistology of lower fat cells deposited in liver tissues. In in vitro studies, the extracts have been identified to be capable of inhibiting the activity of amylase and glucoside enzymes and scavenging free radicals. Moreover, both green tea and Garcinia extracts showed non-toxicity as presented by the activity of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and blood urea nitrogen (BUN). In conclusion, the pathogenic factors involved in atherosclerosis were reduced by green tea and Garcinia extracts, and both extracts could be useful for better prevention and treatment of atherosclerosis and cardiovascular diseases.


RSC Advances ◽  
2016 ◽  
Vol 6 (70) ◽  
pp. 65808-65815 ◽  
Author(s):  
Wei Song ◽  
Chen Song ◽  
Yujuan Shan ◽  
Weihong Lu ◽  
Jiliang Zhang ◽  
...  

In this paper, three Lactobacillus strains (L. coryniformis subsp. torquens T3, L. paracasei subsp. paracasei M5 and L. paracasei subsp. paracasei X12) isolated in our laboratory were investigated for antioxidant activity in vitro and in vivo.


2013 ◽  
Vol 137 (1-4) ◽  
pp. 122-129 ◽  
Author(s):  
Luciene Fagundes Lauer Macedo ◽  
Marcelo Macedo Rogero ◽  
Jessica Pereira Guimarães ◽  
Daniel Granato ◽  
Luciana Pereira Lobato ◽  
...  

2019 ◽  
Vol 89 (1-2) ◽  
pp. 45-54
Author(s):  
Akemi Suzuki ◽  
André Manoel Correia-Santos ◽  
Gabriela Câmara Vicente ◽  
Luiz Guillermo Coca Velarde ◽  
Gilson Teles Boaventura

Abstract. Objective: This study aimed to evaluate the effect of maternal consumption of flaxseed flour and oil on serum concentrations of glucose, insulin, and thyroid hormones of the adult female offspring of diabetic rats. Methods: Wistar rats were induced to diabetes by a high-fat diet (60%) and streptozotocin (35 mg/kg). Rats were mated and once pregnancy was confirmed, were divided into the following groups: Control Group (CG): casein-based diet; High-fat Group (HG): high-fat diet (49%); High-fat Flaxseed Group (HFG): high-fat diet supplemented with 25% flaxseed flour; High-fat Flaxseed Oil group (HOG): high-fat diet, where soya oil was replaced with flaxseed oil. After weaning, female pups (n = 6) from each group were separated, received a commercial rat diet and were sacrificed after 180 days. Serum insulin concentrations were determined by ELISA, the levels of triiodothyronine (T3), thyroxine (T4) and thyroid-stimulating hormone (TSH) were determined by chemiluminescence. Results: There was a significant reduction in body weight at weaning in HG (−31%), HFG (−33%) and HOG (44%) compared to CG (p = 0.002), which became similar by the end of 180 days. Blood glucose levels were reduced in HFG (−10%, p = 0.044) when compared to CG, and there was no significant difference between groups in relation to insulin, T3, T4, and TSH after 180 days. Conclusions: Maternal severe hyperglycemia during pregnancy and lactation resulted in a microsomal offspring. Maternal consumption of flaxseed reduces blood glucose levels in adult offspring without significant effects on insulin levels and thyroid hormones.


2019 ◽  
Vol 19 (2) ◽  
pp. 189-198 ◽  
Author(s):  
Mohammed Ajebli ◽  
Fadwa El Ouady ◽  
Mohamed Eddouks

Background and Objective: Warionia saharae Benth & Coss, a plant belonging to Asteraceae family, is used for its anti-diabetic properties in Morocco. The objective of this study was to evaluate the effect of tannins extracted from Warionia saharae (W. saharae) on blood glucose levels and lipid profile in normal and streptozotocin(STZ)-induced diabetic rats. Methods: Tannins (TE) were extracted from W. saharae using Soxhlet apparatus and different organic solvents. Single and once daily repeated oral administration of TE (10 mg/kg) for 15 days were used to evaluate the glucose and lipid-lowering activity in normal and diabetic rats. Furthermore, glucose test tolerance, liver histopathological examination and in vitro antioxidant activity of TE were carried out in this study. Results: The results showed that TE was able to exert antihyperglycemic and lowering total cholesterol effects as well as improvement of the high-density lipoprotein (HDL)-cholesterol serum level after 15 days of treatment. Furthermore, TE improved glucose tolerance, histopathological status of liver in diabetic rats and demonstrated interesting antioxidant activity. Conclusion: In conclusion, the present investigation revealed that TE possesses potent antidiabetic and antihyperlipidemic activities as claimed in different ethnopharmacological practices.


2021 ◽  
Vol 22 (7) ◽  
pp. 3746
Author(s):  
Ilaria Zuliani ◽  
Chiara Lanzillotta ◽  
Antonella Tramutola ◽  
Eugenio Barone ◽  
Marzia Perluigi ◽  
...  

The disturbance of protein O-GlcNAcylation is emerging as a possible link between altered brain metabolism and the progression of neurodegeneration. As observed in brains with Alzheimer’s disease (AD), flaws of the cerebral glucose uptake translate into reduced protein O-GlcNAcylation, which promote the formation of pathological hallmarks. A high-fat diet (HFD) is known to foster metabolic dysregulation and insulin resistance in the brain and such effects have been associated with the reduction of cognitive performances. Remarkably, a significant role in HFD-related cognitive decline might be played by aberrant protein O-GlcNAcylation by triggering the development of AD signature and mitochondrial impairment. Our data support the impairment of total protein O-GlcNAcylation profile both in the brain of mice subjected to a 6-week high-fat-diet (HFD) and in our in vitro transposition on SH-SY5Y cells. The reduction of protein O-GlcNAcylation was associated with the development of insulin resistance, induced by overfeeding (i.e., defective insulin signaling and reduced mitochondrial activity), which promoted the dysregulation of the hexosamine biosynthetic pathway (HBP) flux, through the AMPK-driven reduction of GFAT1 activation. Further, we observed that a HFD induced the selective impairment of O-GlcNAcylated-tau and of O-GlcNAcylated-Complex I subunit NDUFB8, thus resulting in tau toxicity and reduced respiratory chain functionality respectively, highlighting the involvement of this posttranslational modification in the neurodegenerative process.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maki Murakoshi ◽  
Tomohito Gohda ◽  
Eri Adachi ◽  
Saki Ichikawa ◽  
Shinji Hagiwara ◽  
...  

AbstractProgranulin (PGRN) has been reported to bind tumor necrosis factor (TNF) receptor and to inhibit TNFα signaling. We evaluated the effect of augmentation of TNFα signaling by PGRN deficiency on the progression of kidney injury. Eight-week-old PGRN knockout (KO) and wild-type (WT) mice were fed a standard diet or high-fat diet (HFD) for 12 weeks. Albuminuria, markers of tubular damage, and renal mRNA levels of inflammatory cytokines were higher in HFD-fed KO (KO-HFD) mice than in HFD-fed WT (WT-HFD) mice. Body weight, vacuolization in proximal tubules, and systemic and adipose tissue inflammatory markers were lower in the KO-HFD mice than in the WT-HFD mice. The renal megalin expression was lower in the KO mice than in the WT mice regardless of the diet type. The megalin expression was also reduced in mouse proximal tubule epithelial cells stimulated with TNFα and in those with PGRN knockdown by small interfering RNA in vitro. PGRN deficiency was associated with both exacerbated renal inflammation and decreased systemic inflammation, including that in the adipose tissue of mice with HFD-induced obesity. Improved tubular vacuolization in the KO-HFD mice might partially be explained by the decreased expression of megalin in proximal tubules.


Sign in / Sign up

Export Citation Format

Share Document