scholarly journals Fuzzy Based Network Assignment and Link-Switching Analysis in Hybrid OCC/LiFi System

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Moh. Khalid Hasan ◽  
Mostafa Zaman Chowdhury ◽  
Md. Shahjalal ◽  
Yeong Min Jang

In recent times, optical wireless communications (OWC) have become attractive research interest in mobile communication for its inexpensiveness and high-speed data transmission capability and it is already recognized as complementary to radio-frequency (RF) based technologies. Light fidelity (LiFi) and optical camera communication (OCC) are two promising OWC technologies that use a photo detector (PD) and a camera, respectively, to receive optical pulses. These communication systems can be implemented in all kinds of environments using existing light-emitting diode (LED) infrastructures to transmit data. However, both networking layers suffer from several limitations. An excellent solution to overcoming these limitations is the integration of OCC and LiFi. In this paper, we propose a hybrid OCC and LiFi architecture to improve the quality-of-service (QoS) of users. A network assignment mechanism is developed for the hybrid system. A dynamic link-switching technique for efficient handover management between networks is proposed afterward which includes switching provisioning based on user mobility and detailed network switching flow analysis. Fuzzy logic (FL) is used to develop the proposed mechanisms. A time-division multiple access (TDMA) based approach, called round-robin scheduling (RRS), is also adopted to ensure fairness in time resource allocation while serving multiple users using the same LED in the hybrid system. Furthermore, simulation results are presented taking different practical application scenarios into consideration. The performance analysis of the network assignment mechanism, which is provided at the end of the paper, demonstrates the importance and feasibility of the proposed scheme.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Haidar Zaeer Dhaam ◽  
Mohammed Jawad Al Dujaili ◽  
Mushtaq Talib Mezeel ◽  
Abdullah Ali Qasim

Abstract A new architecture for increasing the number of simultaneous users in a hybrid system and providing a solution for the channel bottleneck problem has been designed and simulated. The 10G-TDM-OCDMA-PON system combines optical code division multiple access (OCDMA) and time-division multiplexed passive optical network (TDM-PON) techniques. The high bit rate TDM-PON system is based on a bit interleaving that uses noncontiguous order for data arranging manner, this system used to obtain ultra-high-speed data rate of 40 Gbps based on four TDM channels of 10 Gbps. The OCDMA system is based on two-dimensional single weight zero cross-correlation (2D-SWZCC) employing polarization and wavelength scheme with two orthogonal polarization angles (vertical and horizontal states). The proposed hybrid system increases the scalability by multiplexing M OCDMA codes in the same time slot of the TDM system that has N time slots. The results show that the proposed system with 2D-SWZCC has better performance with a high number of users and higher scalability than the system with 1D-SWZCC.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Saad M. Hardan ◽  
Ayad A. Abdulkafi ◽  
Saadi Hamad Thalij ◽  
Sherine S. Jumaah

Abstract The continued increase in several mobile applications forces to replace existing limited spectrum indoor radio frequency wireless connections with high-speed ones. Visible light communications (VLC) technology has gained prominence in the development of high data rate transmission for fifth-generation networks. In optical wireless communications, light-emitting diode (LED) transmitters are used in applications that desire mobility as LED divergence enables larger coverage. Since each VLC access point covers a small area, handovers of mobile users are inevitable. Wavelength division multiplexing (WDM) can be used in VLC systems to tackle the above issue and to meet the increasing demand for indoor connectivity with high bit rates. In this paper, a new system architecture for WDM with coded modulated optical in orthogonal frequency division multiplexing (OFDM) VLC system in conjunction with red, green, blue, and yellow (RGBY) LEDs is proposed to reduce the impact of random receiver orientation of indoor mobile users over VLC downlink channels and improves the system’s bit-error-rate (BER) performance. Simulation results show that the proposed method is not affected by the user’s mobility and hence it performs better than other approaches, in terms of BER for all scenarios and at all positions. This study reveals that using WDM-OFDM-VLC with RGBY LEDs to construct a VLC system is very promising.


2015 ◽  
Vol 68 (7) ◽  
pp. 1108 ◽  
Author(s):  
Osmundo Dantas Pessoa-Neto ◽  
Tiago Almeida Silva ◽  
Vagner Bezerra dos Santos ◽  
Orlando Fatibello-Filho

A compact environmentally friendly microcontrolled microfluidic device ideal for in situ phosphate determination was developed based on a microsystem based on low-temperature co-fired ceramics (LTCC) coupled to a light-emitting diode (LED)–photometer with a multicommutation flow analysis (MCFA) approach. The experimental parameters of the MCFA analyzer were optimized by chemometric studies. Under the best experimental conditions, limits of detection and quantification of 0.02 mg P L–1 and 0.07 mg P L–1, respectively, and a sampling frequency of 67 h–1 were estimated. Moreover, a low sample consumption of only 60 μL per determination was the other advantage that fully meets the requirements of sustainable research and green chemistry purposes.


Sign in / Sign up

Export Citation Format

Share Document