scholarly journals Study on the Control Method of Mine-Used Bolter Manipulator Based on Fractional Order Algorithm and Input Shaping Technology

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Jun Zhang ◽  
Qingxue Huang

Mine-used bolter is the main equipment to solve the imbalance of excavation and anchor in well mining, and the manipulator is the main working mechanism of mine bolt drilling rig. The manipulator positioning requires high rapidity and stability. For this reason, this paper proposes a composite control method of “input shaping + fractional order PDμ control”. According to the mathematical model of the valve-controlled cylinder, the fractional-order controller PDμ is developed. At the same time, the input shaping is used to feed forward the accurate positioning and path planning of the manipulator, which not only improves the robustness of the system, but also shortens the stability time of the system and restrains the maximum amplitude of the system vibration. In this paper, the control effects of fractional order PDμ controller and integer order PD controller are compared. The results show that the maximum amplitude of the control system is reduced by 75% and the stabilization time is reduced by 60% after using the fractional order PDμ controller, which fully reflects the superiority of the fractional order controller in response speed, adjusting time, and steady-state accuracy. Finally, the control effects of “input shaping + fractional order PDμ control” and fractional order PDμ controller on the stability of the system are compared. The maximum amplitude of the system was reduced by 50% by using “input shaping + fractional order PDμ control”. Numerical simulation confirms the feasibility and effectiveness of the composite control method. This composite control method provides theoretical support for the precise positioning of the manipulator, and the high stability and high safety of the manipulator also expand the application scope and depth of the composite control method.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shijie Dai ◽  
Yufeng Zhao ◽  
Wenbin Ji ◽  
Jiaheng Mu ◽  
Fengbao Hu

Purpose This paper aims to present a control method to realize the constant force grinding of automobile wheel hub. Design/methodology/approach A constant force control strategy combined by extended state observer (ESO) and backstepping control is proposed. ESO is used to estimate the total disturbance to improve the anti-interference and stability of the system and Backstepping control is used to improve the response speed of the system. Findings The simulation and grinding experimental results show that, compared with the proportional integral differential control and active disturbance rejection control, the designed controller can improve the dynamic response performance and anti-interference ability of the system and can quickly track the expected force and improve the grinding quality of the hub surface. Originality/value The main contribution of this paper lies in the proposed of a new constant force control strategy, which significantly improved the stability and precision of grinding force.


Author(s):  
Karim Saadaoui

This paper focuses on the problem of stabilizing fractional order time delay systems by fractional first order controllers. A solution is proposed to find the set of all stability regions in the controller’s parameter space. The D-decomposition method is employed to find the real root boundary and complex root boundaries which are used to identify the stability regions. Illustrative examples are given to show the effectiveness of the proposed approach, and it is remarked that the stability region obtained for the fractional order controller is larger than the non-fractional controller.


2021 ◽  
pp. 289-297
Author(s):  
Zhaohan zhang, Huiling Jin

This paper studies the synchronization control of fractional order chaotic systems based on memristor and its hardware implementation. This paper takes the complex dynamic phenomena of memristor turbidity system as the research background. Starting with the integer order memristor system, the fractional order form is derived based on the integer order turbid system, and its dynamics is deeply studied. At the same time, the turbidity phenomenon is applied to the watermark encryption algorithm, which effectively improves the confidentiality of the algorithm. Finally, in order to suppress the occurrence of turbidity, a fractional order sliding mode controller is proposed. In this paper, the sliding mode controller under the function switching control method is established, and the conditions for the parameters of the sliding mode controller are derived. Finally, the experimental results analyze the stability of the controlled system under different parameters, and give the corresponding time-domain waveform to verify the correctness of the theoretical analysis.


2019 ◽  
Vol 9 (16) ◽  
pp. 3383 ◽  
Author(s):  
Fei ◽  
Wang ◽  
Cao

An adaptive fractional-order fuzzy control method for a three-phase active power filter (APF) using a backstepping and sliding mode controller is developed for the purpose of compensating harmonic current and stabilizing the DC voltage quickly. The dynamic model of APF is changed to an analogical cascade system for the convenience of the backstepping strategy. Then a fractional-order sliding mode surface is designed and a fuzzy controller is proposed to approximate the unknown term in the controller, where parameters can be adjusted online. The simulation experiments are conducted and investigated using MATLAB/SIMULINK software package to verify the advantage of the proposed controller. Furthermore, the comparison study between the fractional-order controller and integer-order one is also conducted in order to demonstrate the better performance of the proposed controller in total harmonic distortion (THD), a significant index to evaluate the current quality in the smart grid.


2021 ◽  
pp. 107754632110396
Author(s):  
Chunxiu Wang ◽  
Xingde Zhou ◽  
Yitong Jin ◽  
Xianzeng Shi

Constant fractional order vibration control strategy has been one of research hotspots in recent decades. However, the variable fractional order control method is seldom concerned up to now. In this article, a novel variable fractional order sliding mode control (VOSMC) method is proposed to suppress the responses of building structure caused by seismic excitations, including El Centro, Hachinohe, Northridge, and Kobe earthquakes. Based on the proposed variable fractional order sliding mode surface, the control law of VOSMC is presented. The global asymptotic stability of the control system is analyzed and proved by utilizing variable fractional order Lyapunov stability theorem. Besides, the corresponding constant fractional order sliding mode control (COSMC) method is also given. The control effects of VOSMC and COSMC methods are discussed by four performance indices. Finally, the utilizability and reasonability of the proposed control method is verified by using two examples (include two-story and five-story shear buildings). Compared with the COSMC method, the proposed variable fractional order controller not only has a lesser control output, but also has a higher utilization of the output, which is conducive to energy saving.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Sachin Bhalekar ◽  
Varsha Daftardar-Gejji

Antisynchronization phenomena are studied in nonidentical fractional-order differential systems. The characteristic feature of antisynchronization is that the sum of relevant state-variables vanishes for sufficiently large value of time variable. Active control method is used first time in the literature to achieve antisynchronization between fractional-order Lorenz and Financial systems, Financial and Chen systems, and Lü and Financial systems. The stability analysis is carried out using classical results. We also provide numerical results to verify the effectiveness of the proposed theory.


2014 ◽  
Vol 1008-1009 ◽  
pp. 556-561
Author(s):  
Xing Yang ◽  
Xiang Shun Li

Aiming at the problem that sail-assisted ship is easy to yaw because of sail’s lateral force and adjusts its course slowly due to wind, wave and other interferences on the sea, this paper put forward a feedforward feedback control method based on fuzzy system. According to the relationship between lateral force and yaw angle, a feedforward controller was designed to offset the yaw of ship. In order to correct the drift angle of ship automatically, the feedback controller was fulfilled to track the given course. Feedback control loop adopted fuzzy self-adjusting PD controller to make the drift angle be adjusted in time. The simulations indicate that the feedforward feedback control can suppress the disturbance produced by lateral force effectively, enhance the stability of the system and accelerate the response speed.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Lu Liu ◽  
Feng Pan ◽  
Dingyu Xue

Fractional-order time-delay system is thought to be a kind of oscillatory complex system which could not be controlled efficaciously so far because it does not have an analytical solution when using inverse Laplace transform. In this paper, a type of fractional-order controller based on numerical inverse Laplace transform algorithm INVLAP was proposed for the mentioned systems by searching for the optimal controller parameters with the objective function of ITAE index due to the verified nature that fractional-order controllers were the best means of controlling fractional-order systems. Simulations of step unit tracking and load-disturbance responses of the proposed fractional-order optimalPIλDμcontroller (FOPID) and corresponding conventional optimal PID (OPID) controller have been done on three typical kinds of fractional time-delay system with different ratio between time delay (L) and time constant (T) and a complex high-order fractional time delay system to verify the availability of the presented control method.


2011 ◽  
Vol 25 (03) ◽  
pp. 407-415 ◽  
Author(s):  
XIANG RONG CHEN ◽  
CHONG XIN LIU

Based on the stability theory of fractional order systems, an effective but theoretically rigorous nonlinear control method is proposed to synchronize the fractional order chaotic systems. Using this method, chaos synchronization between two identical fractional order unified systems is studied. Simulation results are shown to illustrate the effectiveness of this method.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Fengjiao Wu ◽  
Guitao Zhang ◽  
Zhengzhong Wang

The robust fuzzy control for fractional-order hydroturbine regulating system is studied in this paper. First, the more practical fractional-order hydroturbine regulating system with uncertain parameters and random disturbances is presented. Then, on the basis of interval matrix theory and fractional-order stability theorem, a fuzzy control method is proposed for fractional-order hydroturbine regulating system, and the stability condition is expressed as a group of linear matrix inequalities. Furthermore, the proposed method has good robustness which can process external random disturbances and uncertain parameters. Finally, the validity and superiority are proved by the numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document