scholarly journals Flexible Wi-Fi Communication among Mobile Robots in Indoor Industrial Environments

2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Jetmir Haxhibeqiri ◽  
Elnaz Alizadeh Jarchlo ◽  
Ingrid Moerman ◽  
Jeroen Hoebeke

In order to speed up industrial processes and to improve logistics, mobile robots are getting important in industry. In this paper, we propose a flexible and configurable architecture for the mobile node that is able to operate in different network topology scenarios. The proposed solution is able to operate in presence of network infrastructure, in ad hoc mode only, or to use both possibilities. In case of mixed architecture, mesh capabilities will enable coverage problem detection and overcoming. The solution is based on real requirements from an automated guided vehicle producer. First, we evaluate the overhead introduced by our solution. Since the mobile robot communication relies in broadcast traffic, the broadcast scalability in mesh network is evaluated too. Finally, through experiments on a wireless testbed for a variety of scenarios, we analyze the impact of roaming, mobility and traffic separation, and demonstrate the advantage of our approach in handling coverage problems.

2021 ◽  
Vol 12 ◽  
Author(s):  
Francesco Neri ◽  
Carmelo Luca Smeralda ◽  
Davide Momi ◽  
Giulia Sprugnoli ◽  
Arianna Menardi ◽  
...  

First-Person Shooter (FPS) game experience can be transferred to untrained cognitive functions such as attention, visual short-term memory, spatial cognition, and decision-making. However, previous studies have been using off-the-shelf FPS games based on predefined gaming settings, therefore it is not known whether such improvement of in game performance and transfer of abilities can be further improved by creating a in-game, adaptive in-game training protocol. To address this question, we compared the impact of a popular FPS-game (Counter-Strike:Global-Offensive–CS:GO) with an ad hoc version of the game based on a personalized, adaptive algorithm modifying the artificial intelligence of opponents as well as the overall game difficulty on the basis of individual gaming performance. Two groups of FPS-naïve healthy young participants were randomly assigned to playing one of the two game versions (11 and 10 participants, respectively) 2 h/day for 3 weeks in a controlled laboratory setting, including daily in-game performance monitoring and extensive cognitive evaluations administered before, immediately after, and 3 months after training. Participants exposed to the adaptive version of the game were found to progress significantly faster in terms of in-game performance, reaching gaming scenarios up to 2.5 times more difficult than the group exposed to standard CS:GO (p < 0.05). A significant increase in cognitive performance was also observed. Personalized FPS gaming can significantly speed-up the learning curve of action videogame-players, with possible future applications for expert-video-gamers and potential relevance for clinical-rehabilitative applications.


1988 ◽  
Author(s):  
Laurence Storch ◽  
Donald Fraser ◽  
Robert Lunn ◽  
Barbara Glacel ◽  
Naomi J. McAfee

2020 ◽  
Vol 36 (S1) ◽  
pp. 37-37
Author(s):  
Americo Cicchetti ◽  
Rossella Di Bidino ◽  
Entela Xoxi ◽  
Irene Luccarini ◽  
Alessia Brigido

IntroductionDifferent value frameworks (VFs) have been proposed in order to translate available evidence on risk-benefit profiles of new treatments into Pricing & Reimbursement (P&R) decisions. However limited evidence is available on the impact of their implementation. It's relevant to distinguish among VFs proposed by scientific societies and providers, which usually are applicable to all treatments, and VFs elaborated by regulatory agencies and health technology assessment (HTA), which focused on specific therapeutic areas. Such heterogeneity in VFs has significant implications in terms of value dimension considered and criteria adopted to define or support a price decision.MethodsA literature research was conducted to identify already proposed or adopted VF for onco-hematology treatments. Both scientific and grey literature were investigated. Then, an ad hoc data collection was conducted for multiple myeloma; breast, prostate and urothelial cancer; and Non Small Cell Lung Cancer (NSCLC) therapies. Pharmaceutical products authorized by European Medicines Agency from January 2014 till December 2019 were identified. Primary sources of data were European Public Assessment Reports and P&R decision taken by the Italian Medicines Agency (AIFA) till September 2019.ResultsThe analysis allowed to define a taxonomy to distinguish categories of VF relevant to onco-hematological treatments. We identified the “real-world” VF that emerged given past P&R decisions taken at the Italian level. Data was collected both for clinical and economical outcomes/indicators, as well as decisions taken on innovativeness of therapies. Relevant differences emerge between the real world value framework and the one that should be applied given the normative framework of the Italian Health System.ConclusionsThe value framework that emerged from the analysis addressed issues of specific aspects of onco-hematological treatments which emerged during an ad hoc analysis conducted on treatment authorized in the last 5 years. The perspective adopted to elaborate the VF was the one of an HTA agency responsible for P&R decisions at a national level. Furthermore, comparing a real-world value framework with the one based on the general criteria defined by the national legislation, our analysis allowed identification of the most critical point of the current national P&R process in terms ofsustainability of current and future therapies as advance therapies and agnostic-tumor therapies.


Author(s):  
Sebastián Videla ◽  
Aurema Otero ◽  
Sara Martí ◽  
M. Ángeles Domínguez ◽  
Nuria Fabrellas ◽  
...  

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic started in December 2019 and still is a major global health challenge. Lockdown measures and social distancing sparked a global shift towards online learning, which deeply impacted universities’ daily life, and the University of Barcelona (UB) was not an exception. Accordingly, we aimed to determine the impact of the SARS-CoV-2 pandemic at the UB. To that end, we performed a cross-sectional study on a sample of 2784 UB members (n = 52,529). Participants answered a brief, ad hoc, online epidemiological questionnaire and provided a nasal swab for reverse transcription polymerase chain reaction (RT-PCR) SARS-CoV-2 analysis and a venous blood sample for SARS-CoV-2 IgG antibody assay. Total prevalence of SARS-CoV-2 infection (positive RT-PCR or positive IgG) was 14.9% (95%CI 13.3 to 17.0%). Forty-four participants (1.6%, 95%CI: 1.2–2.1%) were positive for SARS-CoV-2 RT-PCR. IgG against SARS-CoV-2 was observed in 12.8% (95%CI: 11.6–14.1%) of participants. Overall, while waiting for population vaccination and/or increased herd immunity, we should concentrate on identifying and isolating new cases and their contacts.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Trung Kien Vu ◽  
Sungoh Kwon

We propose a mobility-assisted on-demand routing algorithm for mobile ad hoc networks in the presence of location errors. Location awareness enables mobile nodes to predict their mobility and enhances routing performance by estimating link duration and selecting reliable routes. However, measured locations intrinsically include errors in measurement. Such errors degrade mobility prediction and have been ignored in previous work. To mitigate the impact of location errors on routing, we propose an on-demand routing algorithm taking into account location errors. To that end, we adopt the Kalman filter to estimate accurate locations and consider route confidence in discovering routes. Via simulations, we compare our algorithm and previous algorithms in various environments. Our proposed mobility prediction is robust to the location errors.


2012 ◽  
Vol 433-440 ◽  
pp. 3944-3948
Author(s):  
Prasenjit Choudhury ◽  
Anita Pal ◽  
Anjali Gupchup ◽  
Krati Budholiya ◽  
Alokparna Banerjee

Ad-hoc networks are attractive, since they can provide a high level of connectivity without the need of a fixed infrastructure. Nodes that are not within the same transmission range communicate through multi-hops, where intermediate nodes act as relays. Mutual cooperation of all the participating nodes is necessary for proper operation of MANET. However, nodes in MANET being battery-constrained, they tend to behave selfishly while forwarding packets. In this paper, we have investigated the security of MANET AODV routing protocol by identifying the impact of selfish nodes on it. It was observed that due to the presence of selfish nodes, packet loss in the network increases and the performance of MANET degrades significantly. Finally a game theoretic approach is used to mitigate the selfishness attack. All the nodes in MANET should cooperate among themselves to thwart the selfish behavior of attacker nodes.


2021 ◽  
Author(s):  
Altaf Hussain ◽  
Muhammad Rafiq Khan

Abstract Mobile Ad-hoc Network (MANET) is the most emerging and fast expanding technology since the last two decades. One of the major issue and challenging area in MANET is the process of routing due to dynamic topologies and high mobility of mobile nodes. The exchange of information from source to a destination is known as the process of routing. Spectacular amount of attention has been paid by researchers to reliable routing in ad-hoc networks. Efficiency and accuracy of a protocol depends on many parameters in these networks. In addition to other parameters node velocity and propagation models are among them. Calculating signal strength at receiver is the responsibility of a propagation model while mobility of nodes is responsible for topology of the network. A huge amount of loss in performance is occurred due to variation of signal strength at receiver and obstacles between transmissions. Simulation tools are developed to analyze the weakness and strength of protocols along with different parameters that may impact the performance. The choice of a propagation models have an abundant effect on performance on routing protocols in MANET. In this research, it has been analyzed to check the impact of different propagation models on the performance of Optimized Link State Routing (OLSR) in Sparse and Dense scenarios in MANET. The simulation has been carried out in NS-2 by using performance metrics as average Throughput, average packet drop and average latency. The results predicted that propagation models and mobility has a strong impact on the performance of OLSR in considered scenarios.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3571 ◽  
Author(s):  
Antonio Guillen-Perez ◽  
Maria-Dolores Cano

The advent of flying ad hoc networks (FANETs) has opened an opportunity to create new added-value services. Even though it is clear that these networks share common features with its predecessors, e.g., with mobile ad hoc networks and with vehicular ad hoc networks, there are several unique characteristics that make FANETs different. These distinctive features impose a series of guidelines to be considered for its successful deployment. Particularly, the use of FANETs for telecommunication services presents demanding challenges in terms of quality of service, energy efficiency, scalability, and adaptability. The proper use of models in research activities will undoubtedly assist to solve those challenges. Therefore, in this paper, we review mobility, positioning, and propagation models proposed for FANETs in the related scientific literature. A common limitation that affects these three topics is the lack of studies evaluating the influence that the unmanned aerial vehicles (UAV) may have in the on-board/embedded communication devices, usually just assuming isotropic or omnidirectional radiation patterns. For this reason, we also investigate in this work the radiation pattern of an 802.11 n/ac (WiFi) device embedded in a UAV working on both the 2.4 and 5 GHz bands. Our findings show that the impact of the UAV is not negligible, representing up to a 10 dB drop for some angles of the communication links.


2015 ◽  
Vol 4 (2) ◽  
pp. 390 ◽  
Author(s):  
Alaa Zain ◽  
Heba El-khobby ◽  
Hatem M. Abd Elkader ◽  
Mostafa Abdelnaby

A Mobile Ad-Hoc Networks (MANET) is widely used in many industrial and people's life applications, such as earth monitoring, natural disaster prevention, agriculture biomedical related applications, and many other areas. Security threat is one of the major aspects of MANET, as it is one of the basic requirements of wireless sensor network, yet this problem has not been sufficiently explored. The main purpose of this paper is to study different MANETs routing protocols with three scenarios of Denial of Service (DoS) attacks on network layer using proactive routing protocol i.e. Optimized Link State Routing (OLSR) and Reactive routing protocols like Ad hoc On-Demand Distance Vector (AODV), Hybrid routing protocols like Geographic Routing Protocol (GRP). Moreover, a comparative analysis of DoS attacks for throughput, Data loss, delay and network load is taken into account. The performance of MANET under the attack is studied to find out which protocol is more vulnerable to the attack and how much is the impact of the attack on both protocols. The simulation is done using OPNET 17.


Sign in / Sign up

Export Citation Format

Share Document