scholarly journals Numerical Investigation on Head and Brain Injuries Caused by Windshield Impact on Riders Using Electric Self-Balancing Scooters

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Shi Shang ◽  
Yanting Zheng ◽  
Ming Shen ◽  
Xianfeng Yang ◽  
Jun Xu

To investigate head-brain injuries caused by windshield impact on riders using electric self-balancing scooters (ESS). Numerical vehicle ESS crash scenarios are constructed by combining the finite element (FE) vehicle model and multibody scooter/rider models. Impact kinematic postures of the head-windshield contact under various impact conditions are captured. Then, the processes during head-windshield contact are reconstructed using validated FE head/laminated windshield models to assess the severity of brain injury caused by the head-windshield contact. Governing factors, such as vehicle speed, ESS speed, and the initial orientation of ESS rider, have nontrivial influences over the severity of a rider’s brain injuries. Results also show positive correlations between vehicle speed and head-windshield impact speeds (linear and angular). Meanwhile, the time of head-windshield contact happens earlier when the vehicle speed is faster. According to the intensive study, windshield-head contact speed (linear and angular), impact location on the windshield, and head collision area are found to be direct factors on ESS riders’ brain injuries during an impact. The von Mises stress and shear stress rise when relative contact speed of head-windshield increases. Brain injury indices vary widely when the head impacting the windshield from center to the edge or impacting with different areas.

Author(s):  
Tanu Khanuja ◽  
Harikrishnan Narayanan Unni

Traumatic brain injuries are life-threatening injuries that can lead to long-term incapacitation and death. Over the years, numerous finite element human head models have been developed to understand the injury mechanisms of traumatic brain injuries. Many of these models are erroneous and used ellipsoidal or spherical geometries to represent brain. This work is focused on the development of high-quality, comprehensive three-dimensional finite element human head model with accurate representation of cerebral sulci and gyri structures in order to study traumatic brain injury mechanisms. Present geometry, predicated on magnetic resonance imaging data consist of three rudimentary components, that is, skull, cerebrospinal fluid with the ventricular system, and the soft tissues comprising the cerebrum, cerebellum, and brain stem. The brain is modeled as a hyperviscoelastic material. Meshed model with 10 nodes modified tetrahedral type element (C3D10M) is validated against two cadaver-based impact experiments by comparing the intracranial pressures at different locations of the head. Our results indicate a better agreement with cadaver results, specifically for the case of frontal and parietal intracranial pressure values. Existing literature focuses mostly on intracranial pressure validation, while the effects of von Mises stress on brain injury are not analyzed in detail. In this work, a detailed interpretation of neurological damage resulting from impact injury is performed by analyzing von Mises stress and intracranial pressure distribution across numerous segments of the brain. A reasonably good correlation with experimental data signifies the robustness of the model for predicting injury mechanisms based on clinical predictions of injury tolerance criteria.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 301
Author(s):  
Jiaqi Chen ◽  
Hao Wang ◽  
Milad Salemi ◽  
Perumalsamy N. Balaguru

Carbon fiber reinforced polymer (CFRP) matrix composite overwrap repair systems have been introduced and accepted as an alternative repair system for steel pipeline. This paper aimed to evaluate the mechanical behavior of damaged steel pipeline with CFRP repair using finite element (FE) analysis. Two different repair strategies, namely wrap repair and patch repair, were considered. The mechanical responses of pipeline with the composite repair system under the maximum allowable operating pressure (MAOP) was analyzed using the validated FE models. The design parameters of the CFRP repair system were analyzed, including patch/wrap size and thickness, defect size, interface bonding, and the material properties of the infill material. The results show that both the stress in the pipe wall and CFRP could be reduced by using a thicker CFRP. With the increase in patch size in the hoop direction, the maximum von Mises stress in the pipe wall generally decreased as the maximum hoop stress in the CFRP increased. The reinforcement of the CFRP repair system could be enhanced by using infill material with a higher elastic modulus. The CFRP patch tended to cause higher interface shear stress than CFRP wrap, but the shear stress could be reduced by using a thicker CFRP. Compared with the fully bonded condition, the frictional interface causes a decrease in hoop stress in the CFRP but an increase in von Mises stress in the steel. The study results indicate the feasibility of composite repair for damaged steel pipeline.


Author(s):  
Shivonne Haniff ◽  
Paul Taylor ◽  
Aaron Brundage ◽  
Damon Burnett ◽  
Candice Cooper ◽  
...  

A microscale model of the brain was developed in order to understand the details of intracranial fluid cavitation and the damage mechanisms associated with cavitation bubble collapse due to blast-induced traumatic brain injury (TBI). Our macroscale model predicted cavitation in regions of high concentration of cerebrospinal fluid (CSF) and blood. The results from this macroscale simulation directed the development of the microscale model of the superior sagittal sinus (SSS) region. The microscale model includes layers of scalp, skull, dura, superior sagittal sinus, falx, arachnoid, subarachnoid spacing, pia, and gray matter. We conducted numerical simulations to understand the effects of a blast load applied to the scalp with the pressure wave propagating through the layers and eventually causing the cavitation bubbles to collapse. Collapse of these bubbles creates spikes in pressure and von Mises stress downstream from the bubble locations. We investigate the influence of cavitation bubble size, compressive wave amplitude, and internal bubble pressure. The results indicate that these factors may contribute to a greater downstream pressure and von Mises stress which could lead to significant tissue damage.


Author(s):  
Yuan Mao Huang

This study analyzes the loads of a needle by using singularity functions and determines the Von-Mises stresses to predict the failure modes of needles by using a personal computer. After principal stresses are calculated from the bending stress, compressive stress and shear stress, predicted failure modes of needles based on the Von-Mises stress coincide with practical existing failure modes reported by a manufacturer. These calculated stresses are also compared with the results obtained by using the software ABAQUS in the mainframe, and the deviation between the results calculated by these two methods is also investigated. Using this methodology can obtain loads, stresses and failure modes of a needle with acceptable accuracy while reducing the cost of using the commercial software in the mainframe.


2017 ◽  
Vol 62 (3) ◽  
Author(s):  
Christoph Arndt ◽  
Alexandra Görgner ◽  
Carsten Klöhn ◽  
Roger Scholz ◽  
Christian Voigt

AbstractAs literature implies, daily activities of total hip arthroplasty (THA) patients may include movements prone to implant-implant impingement. Thus, high shear stresses may be induced at the acetabular implant-bone interface, increasing the risk of implant loosening. The aim of the current study is to determine whether or not impingement events may pose an actual risk to acetabular periprosthetic bone. An existing experimental workflow was augmented to cover complete three-dimensional strain gage measurement. von Mises and shear stresses were calculated from 1620 measured strain values, collected around a hemispherical cup implant at 2.5 mm interface distance during worst-case impingement loading. A shear stress criterion for acetabular periprosthetic bone was derived from the literature. At the impingement site, magnitudes of von Mises stress amount to 0.57 MPa and tilting shear stress amount to -0.3 MPa at 2.5 mm interface distance. Conclusion can be drawn that worst-case impingement events are unlikely to pose a risk of bone material failure in the periphery around fully integrated cementless acetabular hip implants in otherwise healthy THA patients. As numerical predictions in the literature suggested, it can now be confirmed that impingement moments are unlikely to cause acetabular implant-bone interface fixation failures.


2006 ◽  
Vol 324-325 ◽  
pp. 563-566 ◽  
Author(s):  
Qing Min Yu ◽  
Zhu Feng Yue ◽  
Yong Shou Liu

In this paper, a plate containing a central hole was used to simulate gas turbine blade with cooling hole. Numerical calculations based on crystal plasticity theory have been performed to study the elastic-plastic stress field near the hole under tension. Two crystallographic orientations [001] and [111] were considered. The distributions of resolved shear stresses and strains of the octahedral slip systems {110}<112> were calculated. The results show that the crystallographic orientation has remarkable influence on both von Mises stress and resolved shear stress distributions. The resolved shear stress distributions around the hole are different between the two orientations, which lead to the different activated slip systems. So the deformed shape of the hole in [001] orientation differs from that in [111] orientation.


2010 ◽  
Vol 1246 ◽  
Author(s):  
Roman Victorovich Drachev ◽  
Darren Hansen ◽  
Mark J Loboda

AbstractAn analytical study of the dependence of shear and von-Mises stress distributions, which develop during PVT (Physical Vapor Transport) growth of 4H-SiC, has been executed. The key parameters investigated include thermal conditions of the crystal growth and parameters of the growing boule geometry. The evaluation was conducted via a 24 full factorial DOE (Design of Experiments). Parameters of the growing boule geometry, i.e. seed diameter, growth front height, inclination angle and height of the side surface were set as the DOE factors, while responses were calculated using numerical simulations. It is found that unique SiC boule growth conditions, which simultaneously minimize both the shear stress and von Mises stress magnitudes, cannot be achieved. Optimization of the shear stress distribution favors longer SiC boules with small seed diameters, small expansion angles and flat growth fronts. Alternatively, optimization of von-Mises stress favors short crystals with small seed diameters and small expansion angles but with curved growth fronts. Consequently, optimization of stress components in SiC crystals involves careful investigation of the interaction and compromise of the reaction cell geometry and growth conditions.


Author(s):  
Itzhak Green

This work determines the location of the greatest elastic distress in cylindrical contacts based upon the distortion energy and the maximum shear stress theories. The ratios between the maximum pressure, the von Mises stress, and the maximum shear stress are determined and fitted by empirical formulations for a wide range of Poisson ratios, which represent material compressibility. Some similarities exist between cylindrical and spherical contacts, where for many metallic materials the maximum von Mises or shear stresses emerge beneath the surface. However, if any of the bodies in contact is excessively compressible the maximum von Mises stress appears at the surface. That transitional Poisson ratio is found. The critical force per unit length that causes yielding onset, along with its corresponding interference and half-width contact are derived.


2015 ◽  
Vol 752-753 ◽  
pp. 382-386 ◽  
Author(s):  
Wasim M.K. Helal ◽  
Dong Yan Shi ◽  
Zhi Kai Wang

A study of the effect of material gradient on the performance of a functionally graded endodontic prefabricated parallel post (FGEPPP) is the main goal of the current study. Elastic modulus (E) of FGEPPP is considered to vary continuously from lower to upper surfaces. This variation is performed according the volume fraction. Based on a modified sigmoid function, the volume fraction will be defined in the present work. The primary goal of the current investigation is to analyze the difference between the performance of a homogeneous endodontic prefabricated parallel post (EPPP) and a FGEPPP through finite element analysis (FEA). In the current investigation, von Mises stress, and shear stress in FGEPPP case with a modified sigmoid function and in homogeneous EPPP case are carried out. After that, the effect of material gradient on the performance of an EPPP made of FGM was carried out through FEA in the current investigation. The simulation cases shown that, the maximum values of von Mises stress, and shear stress increase when increasing the value of “D”, and decrease when increasing the value of “w”.


Sign in / Sign up

Export Citation Format

Share Document