Shear stress and von Mises stress distributions in the periphery of an embedded acetabular cup implant during impingement

2017 ◽  
Vol 62 (3) ◽  
Author(s):  
Christoph Arndt ◽  
Alexandra Görgner ◽  
Carsten Klöhn ◽  
Roger Scholz ◽  
Christian Voigt

AbstractAs literature implies, daily activities of total hip arthroplasty (THA) patients may include movements prone to implant-implant impingement. Thus, high shear stresses may be induced at the acetabular implant-bone interface, increasing the risk of implant loosening. The aim of the current study is to determine whether or not impingement events may pose an actual risk to acetabular periprosthetic bone. An existing experimental workflow was augmented to cover complete three-dimensional strain gage measurement. von Mises and shear stresses were calculated from 1620 measured strain values, collected around a hemispherical cup implant at 2.5 mm interface distance during worst-case impingement loading. A shear stress criterion for acetabular periprosthetic bone was derived from the literature. At the impingement site, magnitudes of von Mises stress amount to 0.57 MPa and tilting shear stress amount to -0.3 MPa at 2.5 mm interface distance. Conclusion can be drawn that worst-case impingement events are unlikely to pose a risk of bone material failure in the periphery around fully integrated cementless acetabular hip implants in otherwise healthy THA patients. As numerical predictions in the literature suggested, it can now be confirmed that impingement moments are unlikely to cause acetabular implant-bone interface fixation failures.

2005 ◽  
Vol 73 (2) ◽  
pp. 335-337
Author(s):  
E. Pogozelski ◽  
D. Cole ◽  
M. Wesley

The stresses within the tip of a pencil are examined theoretically, numerically, and experimentally to determine the position and orientation of the fracture surface. The von Mises stress is used to evaluate the impact of the normal and shear stresses due to compression, bending, torsion, and shear. The worst-case stress is shown to occur along the top edge of the inclined pencil point, where the normal stress is compressive. The resulting crack propagates diagonally downwards and towards the tip from this initial position, and is frequently observed to contain a cusp.


2006 ◽  
Vol 324-325 ◽  
pp. 563-566 ◽  
Author(s):  
Qing Min Yu ◽  
Zhu Feng Yue ◽  
Yong Shou Liu

In this paper, a plate containing a central hole was used to simulate gas turbine blade with cooling hole. Numerical calculations based on crystal plasticity theory have been performed to study the elastic-plastic stress field near the hole under tension. Two crystallographic orientations [001] and [111] were considered. The distributions of resolved shear stresses and strains of the octahedral slip systems {110}<112> were calculated. The results show that the crystallographic orientation has remarkable influence on both von Mises stress and resolved shear stress distributions. The resolved shear stress distributions around the hole are different between the two orientations, which lead to the different activated slip systems. So the deformed shape of the hole in [001] orientation differs from that in [111] orientation.


Author(s):  
Itzhak Green

This work determines the location of the greatest elastic distress in cylindrical contacts based upon the distortion energy and the maximum shear stress theories. The ratios between the maximum pressure, the von Mises stress, and the maximum shear stress are determined and fitted by empirical formulations for a wide range of Poisson ratios, which represent material compressibility. Some similarities exist between cylindrical and spherical contacts, where for many metallic materials the maximum von Mises or shear stresses emerge beneath the surface. However, if any of the bodies in contact is excessively compressible the maximum von Mises stress appears at the surface. That transitional Poisson ratio is found. The critical force per unit length that causes yielding onset, along with its corresponding interference and half-width contact are derived.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 301
Author(s):  
Jiaqi Chen ◽  
Hao Wang ◽  
Milad Salemi ◽  
Perumalsamy N. Balaguru

Carbon fiber reinforced polymer (CFRP) matrix composite overwrap repair systems have been introduced and accepted as an alternative repair system for steel pipeline. This paper aimed to evaluate the mechanical behavior of damaged steel pipeline with CFRP repair using finite element (FE) analysis. Two different repair strategies, namely wrap repair and patch repair, were considered. The mechanical responses of pipeline with the composite repair system under the maximum allowable operating pressure (MAOP) was analyzed using the validated FE models. The design parameters of the CFRP repair system were analyzed, including patch/wrap size and thickness, defect size, interface bonding, and the material properties of the infill material. The results show that both the stress in the pipe wall and CFRP could be reduced by using a thicker CFRP. With the increase in patch size in the hoop direction, the maximum von Mises stress in the pipe wall generally decreased as the maximum hoop stress in the CFRP increased. The reinforcement of the CFRP repair system could be enhanced by using infill material with a higher elastic modulus. The CFRP patch tended to cause higher interface shear stress than CFRP wrap, but the shear stress could be reduced by using a thicker CFRP. Compared with the fully bonded condition, the frictional interface causes a decrease in hoop stress in the CFRP but an increase in von Mises stress in the steel. The study results indicate the feasibility of composite repair for damaged steel pipeline.


Author(s):  
Adrian P. Sutton

The concept of stress is introduced in terms of interatomic forces acting through a plane, and in the Cauchy sense of a force per unit area on a plane in a continuum. Normal stresses and shear stresses are defined. Invariants of the stress tensor are derived and the von Mises shear stress is expressed in terms of them. The conditions for mechanical equilibrium in a continuum are derived, one of which leads to the stress tensor being symmetric. Stress is also shown to be the functional derivative of the elastic energy with respect to strain,which enables the stress tensor to be derived in models of interatomic forces. Adiabatic and isothermal stresses are distinguished thermodynamically and anharmonicity of atomic interactions is identified as the reason for their differences. Problems set 2 containsfour problems, one of which is based on Noll’s insightful analysis of stress and mechanical equilibrium.


Author(s):  
Yuan Mao Huang

This study analyzes the loads of a needle by using singularity functions and determines the Von-Mises stresses to predict the failure modes of needles by using a personal computer. After principal stresses are calculated from the bending stress, compressive stress and shear stress, predicted failure modes of needles based on the Von-Mises stress coincide with practical existing failure modes reported by a manufacturer. These calculated stresses are also compared with the results obtained by using the software ABAQUS in the mainframe, and the deviation between the results calculated by these two methods is also investigated. Using this methodology can obtain loads, stresses and failure modes of a needle with acceptable accuracy while reducing the cost of using the commercial software in the mainframe.


2010 ◽  
Vol 1246 ◽  
Author(s):  
Roman Victorovich Drachev ◽  
Darren Hansen ◽  
Mark J Loboda

AbstractAn analytical study of the dependence of shear and von-Mises stress distributions, which develop during PVT (Physical Vapor Transport) growth of 4H-SiC, has been executed. The key parameters investigated include thermal conditions of the crystal growth and parameters of the growing boule geometry. The evaluation was conducted via a 24 full factorial DOE (Design of Experiments). Parameters of the growing boule geometry, i.e. seed diameter, growth front height, inclination angle and height of the side surface were set as the DOE factors, while responses were calculated using numerical simulations. It is found that unique SiC boule growth conditions, which simultaneously minimize both the shear stress and von Mises stress magnitudes, cannot be achieved. Optimization of the shear stress distribution favors longer SiC boules with small seed diameters, small expansion angles and flat growth fronts. Alternatively, optimization of von-Mises stress favors short crystals with small seed diameters and small expansion angles but with curved growth fronts. Consequently, optimization of stress components in SiC crystals involves careful investigation of the interaction and compromise of the reaction cell geometry and growth conditions.


2015 ◽  
Vol 752-753 ◽  
pp. 382-386 ◽  
Author(s):  
Wasim M.K. Helal ◽  
Dong Yan Shi ◽  
Zhi Kai Wang

A study of the effect of material gradient on the performance of a functionally graded endodontic prefabricated parallel post (FGEPPP) is the main goal of the current study. Elastic modulus (E) of FGEPPP is considered to vary continuously from lower to upper surfaces. This variation is performed according the volume fraction. Based on a modified sigmoid function, the volume fraction will be defined in the present work. The primary goal of the current investigation is to analyze the difference between the performance of a homogeneous endodontic prefabricated parallel post (EPPP) and a FGEPPP through finite element analysis (FEA). In the current investigation, von Mises stress, and shear stress in FGEPPP case with a modified sigmoid function and in homogeneous EPPP case are carried out. After that, the effect of material gradient on the performance of an EPPP made of FGM was carried out through FEA in the current investigation. The simulation cases shown that, the maximum values of von Mises stress, and shear stress increase when increasing the value of “D”, and decrease when increasing the value of “w”.


2020 ◽  
Vol 899 ◽  
pp. 81-93
Author(s):  
Nur Faiqa Ismail ◽  
M. Saiful Islam ◽  
Solehuddin Shuib ◽  
Rohana Ahmad ◽  
M. Amar Shahmin

This research was conducted to provide a feasible method for reconstructing the 3D model of mandibular bone to undergo finite element analysis to investigate von Mises stress, deformation and shear stress located at the cortical bone, cancellous one and neck implant of the proposed dental implant design. Dental implant has become a significant remedial approach but although the success rate is high, the fixture failure may happen when there are insufficient host tissues to initiate and sustain the osseointegration. Computerised Tomography scan was conducted to generate head images for bone reconstruction process. MIMICS software and 3-matic software were used to develop the 3D mandibular model. The reconstructed mandibular model was then assembled with five different 3D models of dental implants. Feasible boundary conditions and material properties were assigned to the developed muscle areas and joints. The highest performance design with the best responses was the design B with the value for the von Mises stress for the neck implant, cortical and cancellous bone were 7.53 MPa, 16.91 MPa and 1.34 MPa respectively. The values for the maximum of micromotion for the neck implant, cortical and cancellous bone of design B were 20.60 μm, 21.17 μm and 5.83 μm respectively. Shear stress for neck implant, cortical and cancellous bone for this design were 0.15 MPa, 4.74 MPa and 1.54 MPa respectively. The design with a cone shaped hole which is design B was the proper design when compared with other designs in terms of von Misses stress, deformations and shear stress.


Author(s):  
Ruturaj Badal ◽  
Subham Mohapatra ◽  
Chittaranjan Bhoi ◽  
Nitin Sharma ◽  
Shreeshan Jena ◽  
...  

Abstract This study investigates the structural and hemodynamic behavior of bioresorbable polylactic acid (PLA)-based stent designs for applications in treating coronary artery disease. Three stent designs were chosen and their geometry was modeled in SolidWorks and appropriate meshing was done before importing into the finite element analysis platform (ANSYS). The behavior of the stent designs was analyzed for structural loading conditions equivalent to human arterial blood pressure and similarly, the hemodynamic analysis was carried out under conditions simulating the blood flow. The stent porosity, structural stresses, wall shear stresses (WSS) and the velocity were analyzed, and the results from this multiphysics analysis show that the stresses occurring in the modified cordis stent (MCS) design present a maximum von Mises stress (273.01 MPa). Besides, the maximum WSS of 12.67 Pa is obtained from the hemodynamic flow analysis. The current findings are in the line of literature data for the possible usage of PLA as stent materials that pose a reduced risk of restenosis.


Sign in / Sign up

Export Citation Format

Share Document