scholarly journals OperaBLE: An IoT-Based Wearable to Improve Efficiency and Smart Worker Care Services in Industry 4.0

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Luis Roda-Sanchez ◽  
Celia Garrido-Hidalgo ◽  
Diego Hortelano ◽  
Teresa Olivares ◽  
M. Carmen Ruiz

Industry 4.0 is leading the Fourth Industrial Revolution transforming traditional factories into smart factories governed by the Internet of Things (IoT). In order to assist smart factory employees, this paper introduces OperaBLE, a Bluetooth Low Energy (BLE) wearable proposal which is aimed at enhancing working conditions and efficiency in Industry 4.0 scenarios. We have developed two innovative algorithms for OperaBLE focused on power awareness as the key-enabling attribute towards success: Low-Frequency Movement Characterisation Algorithm (LoMoCA) and Adaptive Heart Rate Algorithm (AHRA). Novel experiments have been carried out using OperaBLE to determine its operability, reliability, and lifespan. Results obtained during experimentation demonstrate how OperaBLE empowers human-machine collaboration embedding workers in closed-loop performance and ensuring nonharmful working conditions by means of power-aware algorithms. OperaBLE is due to bring digitalisation into smart factories, playing an essential role in the emerging wearable revolution to arise in the following years towards smart production systems.

Author(s):  
Isak Karabegović ◽  
Edina Karabegović ◽  
Mehmed Mahmic ◽  
Ermin Husak

From the very knowledge of Industry 4.0, its implementation is carried out in all segments of society, but we still do not fully understand the breadth and speed of its implementation. We are currently witnessing major changes in all industries, so new business methods are emerging. There is a transformation of production systems, a new form of consumption, delivery, and transportation, all thanks to the implementation of new technological discoveries that cover robotics and automation, the internet of things (IoT), 3D printers, smart sensors, radio frequency identification (RFID), etc. Robotic technology is one of the most important technologies in Industry 4.0, so that the robot application in the automation of production processes with the support of information technology brings us to smart automation (i.e., smart factories). The changes are so deep that, from the perspective of human history, there has never been a time of greater promise or potential danger.


Author(s):  
Isak Karabegović ◽  
Edina Karabegović ◽  
Mehmed Mahmic ◽  
Ermin Husak

From the very knowledge of Industry 4.0, its implementation is carried out in all segments of society, but we still do not fully understand the breadth and speed of its implementation. We are currently witnessing major changes in all industries, so new business methods are emerging. There is a transformation of production systems, a new form of consumption, delivery, and transportation, all thanks to the implementation of new technological discoveries that cover robotics and automation, the internet of things (IoT), 3D printers, smart sensors, radio frequency identification (RFID), etc. Robotic technology is one of the most important technologies in Industry 4.0, so that the robot application in the automation of production processes with the support of information technology brings us to smart automation (i.e., smart factories). The changes are so deep that, from the perspective of human history, there has never been a time of greater promise or potential danger.


Author(s):  
Amlan Das*

We are amidst a noteworthy change with respect to the manner in which we make items, because of the digitization of assembling. This change is convincing to the point that it is being called Industry 4.0 to speak to the fourth insurgency that has happened in assembling. Industry 4.0 is flagging an adjustment in the conventional assembling scene. Otherwise called the Fourth Industrial Revolution, Industry 4.0 envelops three mechanical patterns driving this change: network, insight and adaptable robotization. Industry 4.0 portrays the developing pattern towards computerization and information trade in innovation and cycles inside the assembling business, including: The Internet of Things (IoT), The Industrial Internet of Things (IIoT), Cyber-physical Systems (CPS), Smart Manufacturing, Smart Factories, Cloud Computing, Additive Manufacturing, Big Data, Robotics, Cognitive Computing, Artificial Intelligence and Block chain and so forth. This mechanization makes an assembling framework whereby the machines in manufacturing plants are increased with remote network and sensors to screen and picture a whole creation cycle and settle on independent choices. In this paper we are worry about how aptitude and ability of human asset can be grown with the goal that we can conquer this pandemic circumstance effectively. Delicate abilities for taking care of these forthcoming new innovation inserted framework must be taken consideration and carefully instilled by human asset with the goal that simple smooth of efficiency just as hole crossing over of flexibly and request can be conceivable. Skill development should be considered as prioritizing factor for this.


This study will explain the influence of industrial revolution 4.0 on the competence of STIE Pembangunan Tanjungpinang Students. The workforce needed by the industry today are those are competent in the use of digital technology to create smart factories, such as one of the Internet of Things (IoT). The era of the industrial revolution 4.0 opens the opportunity to all students to acquire expertise in accordance with the latest technological developments. For this reason, it is necessary to carry out an up-skilling program or reskilling of students based on the needs of today's industry because talent is the key or important factor for the success participation in industry 4.0. This study uses participatory qualitative research method, which emphasize the depth of the results of research where researchers are directly involved as research instruments. Data is obtained through literature studies, interviews and direct practice. The results of this study will explain the efforts in preparing and mapping the competence of STIE Development students in the era of industrial revolution 4.0. in creating competent students. This is important if our nation wants to be empowered in the days of the fourth industrial revolution which is all automatic and robotic characterised by the latest technology.


2020 ◽  
Vol 25 (3) ◽  
pp. 505-525 ◽  
Author(s):  
Seeram Ramakrishna ◽  
Alfred Ngowi ◽  
Henk De Jager ◽  
Bankole O. Awuzie

Growing consumerism and population worldwide raises concerns about society’s sustainability aspirations. This has led to calls for concerted efforts to shift from the linear economy to a circular economy (CE), which are gaining momentum globally. CE approaches lead to a zero-waste scenario of economic growth and sustainable development. These approaches are based on semi-scientific and empirical concepts with technologies enabling 3Rs (reduce, reuse, recycle) and 6Rs (reuse, recycle, redesign, remanufacture, reduce, recover). Studies estimate that the transition to a CE would save the world in excess of a trillion dollars annually while creating new jobs, business opportunities and economic growth. The emerging industrial revolution will enhance the symbiotic pursuit of new technologies and CE to transform extant production systems and business models for sustainability. This article examines the trends, availability and readiness of fourth industrial revolution (4IR or industry 4.0) technologies (for example, Internet of Things [IoT], artificial intelligence [AI] and nanotechnology) to support and promote CE transitions within the higher education institutional context. Furthermore, it elucidates the role of universities as living laboratories for experimenting the utility of industry 4.0 technologies in driving the shift towards CE futures. The article concludes that universities should play a pivotal role in engendering CE transitions.


2018 ◽  
Vol 15 (4) ◽  
pp. 528-534
Author(s):  
Adriano Pereira ◽  
Eugênio De Oliveira Simonetto ◽  
Goran Putnik ◽  
Helio Cristiano Gomes Alves de Castro

Technological evolutions lead to changes in production processes; the Fourth Industrial Revolution has been called Industry 4.0, as it integrates Cyber-Physical Systems and the Internet of Things into supply chains. Large complex networks are the core structure of Industry 4.0: any node in a network can demand a task, which can be answered by one node or a set of them, collaboratively, when they are connected. In this paper, the aim is to verify how (i) network's connectivity (average degree) and (ii) the number of levels covered in nodes search impacts the total of production tasks completely performed in the network. To achieve the goal of this paper, two hypotheses were formulated and tested in a computer simulation environment developed based on a modeling and simulation study. Results showed that the higher the network's average degree is (their nodes are more connected), the greater are the number of tasks performed; in addition, generally, the greater are the levels defined in the search for nodes, the more tasks are completely executed. This paper's main limitations are related to the simulation process, which led to a simplification of production process. The results found can be applied in several Industry 4.0 networks, such as additive manufacturing and collaborative networks, and this paper is original due to the use of simulation to test this kind of hypotheses in an Industry 4.0 production network.


Author(s):  
İsmail Yıldırım

Industry 4.0 defines the fourth industrial revolution, a new level in the organization and management of products and production systems. This cycle consists of services that include the entire chain, including individualized customer requests, product development, production order, distribution, and recycling to the end user. One of the most important preconditions for the realization of the Industry 4.0 revolution is that companies have completed their digital transformations. New technologies and digitalization have brought a new understanding of insurance. Insurance companies are focused on four areas such as big data, artificial intelligence, internet of objects, and blockchain in the changing world. With the changing habits of consumers in their daily lives, new generation insurance needs emerged. The introduction of a new era shaped by the insurance industry with new products, services, competitors, and customer expectations will have various effects. This chapter describes how Industry 4.0 transforms the insurance sector.


Author(s):  
Zelal Gültekin Kutlu

In this study, the periodical differences of industrial revolutions, which is one of the effects of technological developments in the industrial field, and the last stage of it are mentioned. With the latest industrial revolution called Industry 4.0, machines work in harmony with technology at every stage of industrial areas. This period, known as Industry 4.0 or the fourth industrial revolution, refers to the system in which the latest production technologies, automation systems, and the technologies that make up this system exchange data with each other. In addition to the information technologies and automation systems used in Industry 3.0, industrial production has gained a whole new dimension with the use of the internet. With internet networks, machines, operators, and robots now work in harmony. At this point, the concept of internet of objects becomes important. Therefore, another focus of the study is the concept of internet of objects. There are some assumptions about the uses, benefits, and future status of the internet of things.


Author(s):  
Luiz Eduardo Marques Bastos

This chapter addresses the so-called Industry 4.0 and some of its applications in industrial pumps, seeking to emphasize its characteristics and benefits. The introduction of 4.0 industry technologies in this traditional industry can cause profound changes in existing business models, providing greater customer satisfaction, either improving the effectiveness of equipment operation, contributing to better adjustment to working conditions, and also prolonging their life cycle. We are still in the early stages of these technologies and a lot is yet to evolve; however, there are already interesting examples developed by some pump manufacturers around the world, some of which will be mentioned in this chapter. It is subdivided into three main parts, namely brief historical panorama from the first industrial revolution to Industry 4.0, current applications in the industrial pump industry, and finally, future research directions and conclusion.


2022 ◽  
pp. 1-18
Author(s):  
Ilknur Taştan Boz ◽  
Özden Ibrahimağaoğlu

Industries have undergone three fundamental transformation processes that were revolutionary. Following these processes, industries have been confronted with the phenomenon of Industry 4.0, known as the 4th Industrial Revolution, that is acknowledged as a new transformation process. The basic dynamics of this phenomenon include smart robots, simulation, the internet of things, cloud, additive manufacturing, and big data. It is of utmost importance for businesses that are involved in this process, that are new and trying to adapt to the process, to be prepared and adapt to the effects of Industry 4.0 dynamics. These dynamics lead to significant developments in business models, business processes, organizational structures, employees, and human resource processes. When Industry 4.0 and its dynamics are evaluated in general, businesses that follow the process and make necessary managerial adjustments will be ahead of the competition.


Sign in / Sign up

Export Citation Format

Share Document