scholarly journals Experimental Study on Fatigue Behaviour of BFRP-Concrete Bond Interfaces under Bending Load

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Jianhe Xie ◽  
Jianglin Li ◽  
Zhongyu Lu ◽  
Huan Zhang

Basalt fiber reinforced polymer (BFRP) composites are increasingly being used to retrofit concrete structures by external bonding. For such strengthened members, the BFRP-concrete interface plays the crucial role of transferring stresses. This study aims to investigate the fatigue behaviour of the interface under bending load. A series of tests were conducted on BFRP-concrete bonded joint, including static, fatigue, and postfatigue loading. The fatigue failure modes, the development of deflection, the evolution of BFRP strains, and the propagation of interfacial cracks were analysed. In addition, the debonding-induced fatigue life of BFRP-concrete bonded joints was studied. Finally, a new model of fatigue life was proposed by defining the effective fatigue bond stress. The results showed that the fatigue experience has a significant effect on the BFRP strength especially near the root of concrete transverse crack and on the bond performance of the adhesive near the interface crack tip. There are two main fatigue failure modes: BFRP rupture and BFRP debonding. The fatigue damage development of the bond interface has three stages: rapid, stable, and unstable growth. The proposed model for the debonding-induced fatigue life is more conservative for the BFRP-concrete bonded joints under pure shear load than for those under bending load.

Volume 3 ◽  
2004 ◽  
Author(s):  
L. Han ◽  
K. Young ◽  
R. Hewitt ◽  
A. Chrysanthou ◽  
J. M. O’Sullivan

Self-piercing riveting, as an alternative joining method to spot-welding, has attracted considerable interest from the automotive industry and has been widely used in aluminium intensive vehicles. One of the important factors that need to be considered is the effect of cyclic loading in service, leading to possible fatigue failure. The previous work reported in the public domain on the behaviour of self-piercing rivets has mainly focused on static tests. The work which is reported in this paper is concerned with the fatigue behaviour of single-rivet joints, joining two 2mm 5754 aluminium alloy sheets. The investigation also examined the effect of interfacial conditions on the fatigue behaviour. A number of fatigue failure mechanisms were observed based on rivet fracture, sheet fracture and combinations of these. The investigation has shown that they were dependent on the applied load and the sheet surface condition. Three-parameter Weibull analysis, using Reliasoft Weibull ++5.0 software, was conducted to analyse the experimental results. The analysis enabled the prediction of early-type failure (infant mortality failure) and wear-out failure patterns depending on the condition of the self-piercing riveted joints and the alloy sheet surface.


Author(s):  
Jie Dong ◽  
Chen Xuedong ◽  
Bing Wang ◽  
Weihe Guan ◽  
Tiecheng Yang ◽  
...  

Free span resulting from unevenness of seabed or scour of current is a dangerous status for submarine pipeline. Fatigue failure caused by vortex induced vibration (VIV) is one of the main failure modes for free span. Because of the contact between soil and pipeline, the effect of soil must be considered for the fatigue analysis of free span. In this paper, aimed at one in-service submarine pipeline, the research on the VIV response of free span was investigated considering the effect of stiffness and damping of soil. Furthermore, fatigue damage and fatigue life of free span were evaluated based on the actual measured flow velocity data varied with time. The analysis results have provided support for the maintenance of free span for the submarine pipeline.


1966 ◽  
Vol 88 (3) ◽  
pp. 624-635 ◽  
Author(s):  
W. E. Littmann ◽  
R. L. Widner

Fatigue life of tapered roller bearings and other elements subject to cyclic contact stress reflects the fatigue strength of the selected material under given environmental conditions. The various modes of contact-fatigue failure have been classified according to their appearance and the factors which promote their initiation and propagation. Illustrations of the various failure modes include rig test specimens and bearings representing normal catalog-rated life under laboratory and application environments. Evidence is presented for the propagation of contact fatigue from surface and subsurface origins.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5596
Author(s):  
Keke Lou ◽  
Xing Wu ◽  
Peng Xiao ◽  
Cong Zhang

Basalt fiber has been widely used in asphalt mixture due to its excellent mechanical properties and good combination with asphalt. In order to systematically evaluate the enhancement effect of basalt fiber on the fatigue performance of the mixtures, gradations of Stone Mastic Asphalt and Superpave with different nominal maximum aggregate sizes, namely SMA-13, SUP-20 and SUP-25, were prepared, and a four-point bending beam fatigue test was adopted under the strain control mode. The fatigue damage mode was assessed based on the phenomenology theory, energy dissipation theory and change rate of dissipated energy. The results showed that basalt fiber could well increase the fatigue life of the mixtures. Basalt fiber could also increase the cumulative dissipated energy of the mixtures, and it was linearly correlated with the fatigue life in double logarithmic coordinates. In the meantime, adding basalt fiber could increase the change rate of dissipated energy of the mixtures. Furthermore, it is not appropriate to take the stiffness modulus declined to 50% of the original as the fatigue failure criterion of the mixture; this paper suggested that it is reasonable when the stiffness modulus was 15–25% that of the initial. These findings provide a theoretical basis for exploring the fatigue failure of asphalt pavements.


2015 ◽  
Vol 744-746 ◽  
pp. 1367-1370
Author(s):  
Xu Jun Chen ◽  
Mu Xiang Dai ◽  
Zhong Yang

The fatigue failure modes of reinforced concrete beams externally strengthened with basalt fiber reinforced polymer(BFRP) sheets was examined in an experimental and analytical study. One strengthened beam failed due to the debonding and fracture of U-wraps FRP sheet at the anchors,and the others failed the fatigue fracture of the longitudinal tensile reinforcements. Based onCode for Design of strengthening concrete structure, the fatigue failure of RC bending members strengthened with FRP was analysed,and the indicate that with reinforcement ratio of 0.612% and fatigue stress ratio of 0.3, only the fatigue fracture of steel bars occured rather than the crushing of concrete in the compression zone.


2005 ◽  
Vol 128 (3) ◽  
pp. 293-297 ◽  
Author(s):  
Young Ho Park ◽  
Jun Tang

This paper presents an efficient methodology to solve a fatigue reliability problem. The fatigue failure mechanism and its reliability assessment must be treated as a rate process since, in general, the capacity of the component and material itself changes irreversibly with time. However, when fatigue life is predicted using the S-N curve and a damage summation scheme, the time dependent stress can be represented as several time-independent stress levels using the cycle counting approach. Since, in each counted stress cycle, the stress amplitude is constant, it becomes a random variable problem. The purpose of this study is to develop a methodology and algorithm to solve this converted random variable problem by combining the accumulated damage analysis with the first-order reliability analysis (FORM) to evaluate fatigue reliability. This task was tackled by determining a reliability factor using an inverse reliability analysis. The theoretical background and algorithm for the proposed approach to reliability analysis will be introduced based on fatigue failure modes of mechanical components. This paper will draw on an exploration of the ability to predict spectral fatigue life and to assess the corresponding reliability under a given dynamic environment. Next, the process for carrying out this integrated method of analysis will be explained. Use of the proposed methodology will allow for the prediction of mechanical component fatigue reliability according to different mission requirements.


Author(s):  
John W. Lucek

Rolling-contact fatigue test methods were used to measure the wear performance of several silicon nitride materials. Sintered, hot pressed and hot isostatically pressed materials exhibited wear rates ranging over three orders of magnitude. Hot isostatically pressed materials had the lowest wear rates. Despite the disparity in wear performance, all materials tested had useful rolling-contact fatigue lives compared to steel. Fatigue life estimates, failure modes, and rolling wear performance for theses ceramics are compared to M-50 steel. This work highlights the rapid contact stress reductions that occur due to conformal wear in rolling-contact fatigue testing. Candidate bearing materials with unacceptably high wear rates may exhibit useful fatigue lives. Rolling contact bearing materials must possess useful wear and fatigue resistance. Proper performance screening of candidate bearing materials must describe the failure mode, wear rate, and the fatigue life. Guidelines for fatigue testing methods are proposed.


2012 ◽  
Vol 166-169 ◽  
pp. 1657-1662
Author(s):  
Xu Jun Chen ◽  
Xiao E Zhu ◽  
Zhong Yang ◽  
Mu Xiang Dai

Based on the fatigue test for flexural performance of five reinforced concrete beams, the variation characteristics of the crack development, concrete strain, steel strain, fiber strain with the cycle number of the fatigue load were analyzed, and the effect of hybrid fiber sheets and basalt fiber reinforced polymer(BFRP)sheets on flexural fatigue performance of the strengthened beam was studied. The results show that the accumulated damage of RC beams strengthened with hybrid fiber sheets was slowed down significantly, the anti-crack property was much improved, and the fatigue life was greatly prolonged. Compared with the ordinary RC beam and the RC beam strengthened with double BFRP sheets, the fatigue life of RC beams strengthened with hybrid CFRP/BFRP(C/BFRP) sheets and hybrid CFRP/GFRP(C/GFRP) sheets was increased by 291.26%, 298.63% and 10.73%, 13.53%.


Author(s):  
J. H. Shepherd ◽  
K. Legerlotz ◽  
T. Demirci ◽  
C. Klemt ◽  
G. P. Riley ◽  
...  

Overuse tendinopathies are often considered to be the result of repeated microstrain below the failure threshold, analogous to the fatigue failure of materials under repeated loading [1, 2]. Investigation of tendon overuse in vitro is thus of potential benefit towards characterizing the progression of damage.


Sign in / Sign up

Export Citation Format

Share Document