scholarly journals A Modified Nonlinear Modal Synthesis Scheme for Mistuned Blisks with Synchronized Switch Damping

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Jiuzhou Liu ◽  
Lin Li ◽  
Yu Fan ◽  
Xingrong Huang

In the authors’ previous work (MSSP 2017), we show that the synchronized switch damping based on negative capacitor (SSDNC) is a good candidate for vibration suppression of tuned blisks. In this paper, we consider the mistuned case and propose an efficient numerical approach to accelerate the required statistical analysis. Although SSDNC is a type of nonlinear piezoelectric damping, through an in-depth nonlinear modal analysis, we show that the modal information of the system remains unchanged with respect to the nonlinear modal amplitude. Based on this, an accelerated nonlinear component modal synthesis (NCMS) method is proposed to predict and further analyse the dynamic characteristics of the nonlinear system. The precision and efficiency of the proposed method is compared with that of the multiharmonic balance method. The stochastic characteristics of the blisk are studied with two sources of mistuning. The first one is random stiffness mistuning and the second one is capacitance mistuning. The investigation is carried out with different mistuning levels and under different engine-order excitations. The results show that the NCMS method can accurately predict the forced response of the mistuned blisk with SSDNC, and the calculation cost can be considerably reduced. Two advantages of the SSDNC technique applied to the mistuned blisk have been revealed in the statistical view. The first one is that the SSDNC can suppress the amplified vibration induced by the mistuning of the blisk significantly. The second one is that the vibration-suppression performance of SSDNC is insensitive to the mistuning of the blisk and that of the electrical circuits.

2007 ◽  
Vol 129 (5) ◽  
pp. 559-566 ◽  
Author(s):  
Hongbiao Yu ◽  
K. W. Wang

Extensive investigations have been conducted to study the vibration localization phenomenon and the excessive forced response that can be caused by mistuning in bladed disks. Most previous researches have focused on analyzing∕predicting localization or attacking the mistuning issue via mechanical tailoring. Few have focused on developing effective vibration control methods for such systems. This study extends the piezoelectric network concept, which has been utilized for mode delocalization in periodic structures, to the control of mistuned bladed disks under engine order excitation. A piezoelectric network is synthesized and optimized to effectively suppress vibration in bladed disks. One of the merits of such an approach is that the optimum design is independent of the number of spatial harmonics, or engine orders. Local circuits are first formulated by connecting inductors and resistors with piezoelectric patches on the individual blades. Although these local circuits can function as conventional damped absorber when properly tuned, they do not perform well for bladed disks under all engine order excitations. To address this issue, capacitors are introduced to couple the individual local circuitries. Through such networking, an absorber system that is independent of the engine order can be achieved. Monte Carlo simulation is performed to investigate the effectiveness of the network for a bladed disk with a range of mistuning level of its mechanical properties. The robustness issue of the network in terms of detuning of the electric circuit parameters is also studied. Finally, negative capacitance is introduced and its effect on the performance and robustness of the network is investigated.


Aerospace ◽  
2006 ◽  
Author(s):  
Hongbao Yu ◽  
K. W. Wang

Extensive investigations have been conducted to study the vibration localization phenomenon and the excessive forced response that can be caused by mistuning in bladed disks. Most previous researches have focused on attacking the mistuning issue in the bladed disk, such as reducing the sensitivity of the structure to mistuning through mechanical tailoring, or design optimization. Few have focused on developing effective vibration control methods for such systems. This study extends the piezoelectric network concept, which has been utilized for mode delocalization in periodic structures, to the control of mistuned bladed disks under engine order excitation. A piezoelectric network is synthesized and optimized to effectively suppress the excessive vibration in the bladed disk caused by mistuning. One of the merits of such an approach is that the optimum design is independent of the number of spatial harmonics, or engine orders. Local circuits are first formulated by connecting inductors and resistors with piezoelectric patches on the individual blades. While these local circuits can function as conventional damped absorber when properly tuned, they do not perform well for bladed disks under all engine order excitations. To address this issue, capacitors are introduced to couple the individual local circuitries. Through such networking, an absorber system that is independent of the engine order can be achieved. Monte Carlo simulation is performed to investigate the effectiveness of the network for bladed disk with a range of mistuning level of its mechanical properties. The robustness issue of the network in terms of detuning of the electric circuit parameters is also studied. Finally, negative capacitance is introduced and its effect on the robustness of the network is investigated.


Author(s):  
Jiuzhou Liu ◽  
Lin Li ◽  
Pengcheng Deng ◽  
Chao Li

This paper is meant to contribute a further investigation of the dynamic characteristics of the bladed disks with piezo-network and piezo-shunt circuit. The non-engine-order (NEO) excitation is taken into account from a practical point of view, and the mechanisms of vibration suppression of the two electromechanical systems are explained by means of the modal analysis and the energy analysis. First of all, the dynamic equations are derived based on a lumped parameter electromechanical model, and a normalizing process is used to make the analysis results more general. After the modal analysis of the electromechanical systems, the vibration suppression effect is analyzed when the bladed disk is excited by the engine-order (EO) excitation and the NEO excitation respectively. Then, an energy analysis of the electromechanical systems is performed to understand the dynamic behaviors of the systems better. Finally, the effect of reducing the amplitude magnification of the mistuned bladed disk is investigated. The research results turn out that the electrical natural frequencies (induced by electrical elements) of the system with piezo-shunt circuit are dense, while those of the system with piezo-network are not. When the system is excited by an EO excitation, the energy dissipated by resistors in the shunt circuit is slightly more than that in the network. However, the former is much less than the latter when the system is excited by an NEO excitation. A statistical analysis has been performed and proved that both the piezo-shunt circuit and the piezo-network can compensate the amplitude magnification of the forced response induced by mistuning, and the piezo-network has a better performance when the bladed disk is excited by an NEO excitation.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Hongbiao Yu ◽  
K. W. Wang

For bladed-disk assemblies in turbomachinery, the elements are often exposed to aerodynamic loadings, the so-called engine order excitations. It has been reported that such excitations could cause significant structural vibration. The vibration level could become even more excessive when the bladed disk is mistuned, and may cause fatigue damage to the engine components. To effectively suppress vibration in bladed disks, a piezoelectric transducer networking concept has been explored previously by the authors. While promising, the idea was developed based on a simplified bladed-disk model without considering the disk dynamics. To advance the state of the art, this research further extends the investigation with focus on new circuitry designs for a more sophisticated and realistic system model with the consideration of coupled-blade-disk dynamics. A novel multicircuit piezoelectric transducer network is synthesized and analyzed for multiple-harmonic vibration suppression of bladed disks. An optimal network is derived analytically. The performance of the network for bladed disks with random mistuning is examined through Monte Carlo simulation. The effects of variations (mistuning and detuning) in circuit parameters are also studied. A method to improve the system performance and robustness utilizing negative capacitance is discussed. Finally, experiments are carried out to demonstrate the vibration suppression capability of the proposed piezoelectric circuitry network.


Author(s):  
Felix Figaschewsky ◽  
Arnold Kühhorn ◽  
Bernd Beirow ◽  
Jens Nipkau ◽  
Thomas Giersch ◽  
...  

Recent demands for a reduction of specific fuel consumption of jet engines have been opposed by increasing propulsive efficiency with higher bypass ratios and increased engine sizes. At the same time the challenge for the engine development is to design safe and efficient fan blades of high aspect ratios. Since the fan is the very first rotor stage, it experiences significant distortions in the incoming flow depending on the operating conditions. Flow distortions do not only lead to a performance and stall margin loss but also to remarkable low engine order (LEO) excitation responsible for forced vibrations of fundamental modes. Additionally, fans of jet engines typically suffer from stall flutter, which can be additionally amplified by reflections of acoustic pressure waves at the intake. Stall flutter appears before approaching the stall line on the fan’s characteristic and limits its stable operating range. Despite the fact that this “flutter bite” usually affects only a very narrow speed range, it reduces the overall margin of safe operation significantly. With increasing aspect ratios of ultra-high bypass ratio jet engines the flutter susceptibility will probably increase further and emphasizes the importance of considering aeromechanical analyses early in the design phase of future fans. This paper aims at proving that intentional mistuning is able to remove the flutter bite of modern jet engine fans without raising issues due to heavily increased forced vibrations induced by LEO excitation. Whereas intentional mistuning is an established technology in mitigating flutter, it is also known to amplify the forced response. However, recent investigations considering aeroelastic coupling revealed that under specific circumstances mistuning can also reduce the forced response due to engine order excitation. In order to allow a direct comparison and to limit costs as well as effort at the same time, the intentional mistuning is introduced in a non-destructive way by applying heavy paint to the blades. Its impact on the blade’s natural frequencies is estimated via finite element models with an additional paint layer. In parallel, this procedure is experimentally verified with painted fan blades in the laboratory. A validated SNM (subset of nominal system modes) representation of the fan is used as a computational model to characterize its mistuned vibration behavior. Its validation is done by comparing mistuned mode shape envelopes and frequencies of an experimental modal analysis at rest with those obtained by the updated computational model. In order to find a mistuning pattern minimizing the forced response of mode 1 and 2 at the same time and satisfying stability and imbalance constraints, a multi-objective optimization has been carried out. Finally, the beneficial properties of the optimized mistuning pattern are verified in a rig test of the painted rotor.


Author(s):  
Bernd Beirow ◽  
Felix Figaschewsky ◽  
Arnold Kühhorn ◽  
Alfons Bornhorn

The potential of intentional mistuning to reduce the maximum forced response is analyzed within the development of an axial turbine blisk for ship diesel engine turbocharger applications. The basic idea of the approach is to provide an increased aerodynamic damping level for particular engine order excitations and mode shapes without any significant distortions of the aerodynamic performance. The mistuning pattern intended to yield a mitigation of the forced response is derived from an optimization study applying genetic algorithms. Two blisk prototypes have been manufactured a first one with and another one without employing intentional mistuning. Hence, the differences regarding the real mistuning and other modal properties can be experimentally determined and evaluated as well. In addition, the experimental data basis allows for updating structural models which are well suited to compute the forced response under operational conditions. In this way, the real benefit achieved with the application of intentional mistuning is demonstrated.


Author(s):  
Onome Scott-Emuakpor ◽  
Tommy George ◽  
Brian Runyon ◽  
Casey Holycross ◽  
Bryan Langley ◽  
...  

An additive manufacturing (AM) process has been used to fabricate beam components with unique internal geometries capable of reducing weight and inherently suppressing vibration of the structure. Using the laser powder bed fusion (LPBF) AM process, four unique designs are investigated to quantify and understand the damping effectiveness of this manufacturing concept. Forced-response tests are conducted to validate the damping capability of each internal design configuration. The effects of external geometry, thermal distribution associated with internal friction, strain amplitude, and loading rate dependence on damping performance are studied. The results of the studied beams are compared to the damping performance of a fully-fused, or solid baseline LPBF beam. With only 1–4% internal beam volume alteration, the four unique beams are capable of providing up to ten times damping into their respective systems compared to the baseline, solid beam. From the studies of different parameter effects on damping, the main mechanism for vibration suppression is identified. Validation of the vibration suppression physics allows for internal feature optimization via LPBF that can maximize damping effectiveness.


Author(s):  
Bernd Beirow ◽  
Arnold Kühhorn ◽  
Felix Figaschewsky ◽  
Jens Nipkau

The forced response of an E3E-type high pressure compressor blisk front rotor is analyzed with regard to intentional mistuning and its robustness towards additional random mistuning. Both a chosen alternating mistuning pattern and artificial mistuning patterns optimized concerning the forced response are considered. Focusing on three different blade modes, subset of nominal system mode-based reduced order models are employed to compute the forced response. The disk remains unchanged while the Young’s modulus of each blade is used to define the particular mistuning pattern. The well established aerodynamic influence coefficient technique is employed to model aeroelastic coupling and hence to consider the strongly mode- and inter blade phase angle-dependent aerodynamic damping contribution. It has been found that a reduction of the maximum forced response beyond that of the tuned reference can be achieved for particular mistuning patterns and all modes considered. This implies an exciting engine order which would cause a low nodal diameter mode in case of a tuned blisk. At best a nearly 50% reduction of maximum response magnitudes is computed for the fundamental bending mode and large mistuning. The solution proved to be robust towards additional random mistuning of reasonable magnitude, which is of particular interest with regard to a potential technical realization. In case of small mistuning as assumed for the first torsion and the longitudinal bending mode the advantage of achieving response magnitudes beyond the tuned reference gets lost indeed, if random mistuning is superimposed. However, mostly a lower response level is calculated compared to responses obtained from models adjusted to mistuning determined by experiment.


Author(s):  
J. J. Moore ◽  
A. Palazzolo ◽  
R. Gadangi ◽  
T. A. Nale ◽  
S. A. Klusman ◽  
...  

Abstract A high speed damper test rig has been assembled at Texas A&M University to develop rotordynamic dampers for rocket engine turbopumps that operate at cryogenic temperatures, such as those used in the Space Shuttle Main Engines (SSMEs). Damping is difficult to obtain in this class of turbomachinery due to the low temperature and viscosity of the operating fluid. An impact damper has been designed and tested as a means to obtain effective damping in a rotorbearing system. The performance and behavior of the impact damper is verified experimentally in a cryogenic test rig at Texas A&M. Analytical investigations indicate a strong amplitude dependence on the performance of the impact damper. An optimum operating amplitude exists and is determined both analytically and experimentally. In addition, the damper performance is characterized by an equivalent viscous damping coefficient. The test results prove the impact damper to be a viable means to suppress vibration in a cryogenic rotorbearing system.


2020 ◽  
Vol 37 (2) ◽  
pp. 141-151
Author(s):  
Zhi Huang ◽  
Chaochen Ma ◽  
Hong Zhang

AbstractFor a radial turbine with vaneless volute, the inflow of turbine rotor usually has a circumferential flow distortion due to the influence of the volute tongue. The rotating blades of the rotor are exposed to harmonic aerodynamic loads caused by the distortion, which may induce rotor resonance and lead to high cycle failures (HCF). To understand the forced response mechanism clearly, a numerical analysis was carried out based on a fluid structure interaction (FSI) method. The pressure functions were extracted from the results of a computational fluid dynamics (CFD) analysis by Fourier decomposition. The first three harmonic pressures were identified as the primary engine order (EO) excitations and imposed on the structural model for computational structural dynamics (CSD) simulation. The quantification and assessment of the rotor response were attained by mode superposition method. The simulation results are shown to be consistent with the predictions of Singh’s advanced frequency evaluation (SAFE) diagram.


Sign in / Sign up

Export Citation Format

Share Document