scholarly journals Experimental Study on the Permeability of Weakly Cemented Rock under Different Stress States in Triaxial Compression Tests

Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Gangwei Fan ◽  
Mingwei Chen ◽  
Dongsheng Zhang ◽  
Zhen Wang ◽  
Shizhong Zhang ◽  
...  

Mudstone and shaly coarse sandstone samples of Jurassic units in northwestern China were collected to study the seepage mechanism of weakly cemented rock affected by underground mining operations. Samples were studied using seepage experiments under triaxial compression considering two processes: complete stress-strain and postpeak loading and unloading. The results show that permeability variations closely correspond to deviatoric stress-axial strain during the process of complete stress-strain. The initial permeability is 7 times its minimum, contrasting with lesser differentials of initial, peak, and residual permeability. The magnitude of permeability ranges from 10−17 to 10−19 m2, representing a stable water-resisting property, and is 1 to 2 orders lower in mudstone than that in shaly coarse sandstone, indicating that the water-resisting property of the mudstone is much better than that of the shaly coarse sandstone. Permeability is negatively correlated with the confining pressure. In response to this pressure, the permeability change in mudstone is faster than that in shaly coarse sandstone during the process of postpeak loading and unloading. Weakly cemented rock has lower permeability according to the comparison with congeneric ordinary rocks. This distinction is more remarkable in terms of the initial permeability. Analyses based on scanning electron microscope (SEM) observations and mineral composition indicate that the samples are rich in clay minerals such as montmorillonite and kaolin, whose inherent properties of hydroexpansiveness and hydrosliming can be considered the dominant factors contributing to the seepage properties of weakly cemented rock with low permeability.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1943
Author(s):  
Fu Yi ◽  
Changbo Du

To evaluate the shear properties of geotextile-reinforced tailings, triaxial compression tests were performed on geogrids and geotextiles with zero, one, two, and four reinforced layers. The stress–strain characteristics and reinforcement effects of the reinforced tailings with different layers were analyzed. According to the test results, the geogrid stress–strain curves show hardening characteristics, whereas the geotextile stress–strain curves have strain-softening properties. With more reinforced layers, the hardening or softening characteristics become more prominent. We demonstrate that the stress–strain curves of geogrids and geotextile reinforced tailings under different reinforced layers can be fitted by the Duncan–Zhang model, which indicates that the pseudo-cohesion of shear strength index increases linearly whereas the friction angle remains primarily unchanged with the increase in reinforced layers. In addition, we observed that, although the strength of the reinforced tailings increases substantially, the reinforcement effect is more significant at a low confining pressure than at a high confining pressure. On the contrary, the triaxial specimen strength decreases with the increase in the number of reinforced layers. Our findings can provide valuable input toward the design and application of reinforced engineering.



1995 ◽  
Vol 32 (3) ◽  
pp. 428-451 ◽  
Author(s):  
Glen R. Andersen ◽  
Christopher W. Swan ◽  
Charles C. Ladd ◽  
John T. Germaine

The stress–strain behavior of frozen Manchester fine sand has been measured in a high-pressure low-temperature triaxial compression testing system developed for this purpose. This system incorporates DC servomotor technology, lubricated end platens, and on-specimen axial strain devices. A parametric study has investigated the effects of changes in strain rate, confining pressure, sand density, and temperature on behavior for very small strains (0.001%) to very large (> 20%) axial strains. This paper presents constitutive behavior for strain levels up to 1%. On-specimen axial strain measurements enabled the identification of a distinct upper yield stress (knee on the stress–strain curve) and a study of the behavior in this region with a degree of precision not previously reported in the literature. The Young's modulus is independent of strain rate and temperature, increases slightly with sand density in a manner consistent with Counto's model for composite materials, and decreases slightly with confining pressure. In contrast, the upper yield stress is independent of sand density, slightly dependent on confining pressure (considered a second order effect), but is strongly dependent on strain rate and temperature in a fashion similar to that for polycrystalline ice. Key words : frozen sand, high-pressure triaxial compression, strain rate, temperature, modulus, yield stress.



2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Tuo Wang ◽  
Zhanguo Ma ◽  
Peng Gong ◽  
Ning Li ◽  
Shixing Cheng

In underground mining and roadway support engineering of coal mine, the coal and rock layers bear loads together; therefore, the deformation and mechanical characteristics of the coal-rock combined bodies are not the same as those of the pure coal or rock bodies. In this paper, conventional triaxial compression tests of coal-rock combined bodies with different height ratios were conducted. And the stress and deformation characteristics of coal-rock combined body were studied and the experimental results were analyzed with different strength criteria. The results show that the peak stress, elastic modulus, and strength reduction coefficient of coal-rock combined body are negatively correlated with the ratio of coal to coal-rock combination height and positively correlated with the confining pressure; the coal-rock combination shows obvious ductility under 10 MPa confining pressure. Under the conventional triaxial condition, the shear failure was the main cause of the lateral deformation of the coal body in the coal-rock combination, which was much larger than that of the rock body. The circle deformation value, volume strain value, and the deformation rate in the postpeak stage of coal-rock combination are much higher than those in the prepeak stage. Mohr–Coulomb and general Hoek–Brown strength criterion fit the experimental results well.



2010 ◽  
Vol 168-170 ◽  
pp. 1934-1942
Author(s):  
Zheng Shen ◽  
Lan Zong ◽  
Xiang Dong

The stress-strain characteristics of the fly ash blended with curing agent was studied using uniaxial and triaxial compression tests. Curing agent JNS-2 was used as the stabilizing agents in sample preparation. Four curing agent JNS-2 contents of 3%, 6%, 9% and 12% were selected for sample preparation. UU triaxial compression tests were conducted in a range of confining pressures from 100 kPa to 300 kPa. The experimental results obtained from the laboratory tests showed that curing age, mixture ratio, compaction degree and confining pressures had significant influence on the shape of curves. Uniaxial stress-strain test results demonstrated that the latter strength and deformation characteristics of the fly ash blended with curing agent grew little and with the increase of curing agent amount and compaction factor, the curve of uniaxial stress-strain changed significantly. On the other hand, triaxial stress-strain test results indicted that the failure strain showed a partial negative growth trend with the increase of curing agent amount, and the failure stress showed a partial positive growth trend with the increase of curing agent amount. When the curve was at high confining pressure, it showed hardening type, when at low confining pressure it showed softening type.



2020 ◽  
Author(s):  
Gabriel Oliveira ◽  
Isabel Falorca

The stress-strain relationship of a homogeneous specimen, obtained from triaxial compression test, allows to determine stiffness parameters for numerical-method based analyses in common geotechnical software. Stiffness parameters are defined as the ratio of stress to strain along an axis. However, when a heterogeneous specimen is tested, the equivalent elastic modulus that represents a simplification of the nonlinear behavior is complex. This paper presents a study intended to contribute to the debate about the degree to which conventional soil mechanics approaches can be applied to layered specimens. Triaxial compression tests were carried out on both homogeneous and two-layered specimens under a low effective confining pressure of 30 kPa. The triaxial apparatus was chosen since the applied stress and specimen boundary conditions are well defined, and the repeatability of the test method is good. The behavior of both specimens was studied in terms of the stress-strain relationship and stiffness. The main differences were crucial to understanding the composite soil-aggregate interaction, which is discussed and compared. The results indicate that the interface between composite soil and aggregate is important to keep the stability of the layer of aggregate over the soft composite soil, and practical methods of achieving that are suggested.



2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Zhaolin Li ◽  
Lianguo Wang ◽  
Yinlong Lu ◽  
Wenshuai Li ◽  
Kai Wang

The study of deformation, strength, and other mechanical characteristics of sandstone under true triaxial compression is significant for understanding failure mechanisms in rock and evaluating the stability of underground structures. Conventional and true triaxial compression tests for sandstone are conducted for different stress states in this study using the self-developed true triaxial electrohydraulic servo test system combined with acoustic emission (AE) testing. This study presents an in-depth and systematic investigation of deformation, strength, and AE characteristics. The results show significant differences in deformation, strength, and acoustic emission characteristics for the rock under conventional triaxial and true triaxial compression tests, respectively. The peak strength, axial strain, lateral strain, and incremental strain (in unstable crack growth stage) increase with increasing confining pressure under conventional triaxial compression, and the AE count gradually decreases while shear crack proportion gradually increases, indicating that increasing confining pressure gradually inhibits the shear slip effect along fractures, delays perforation of the rock shear fracture surface, and enhances the ability of the rock to withstand deformation and load. Under true triaxial compression, the peak strength increases and then decreases with increasing intermediate principal stress σ2 and the axial strain ε1 and lateral strain ε2 gradually decrease; besides, the lateral strain (expansion) of the rock is mainly in the minimum principal stress σ3 direction, and lateral expansion tends to decrease before increasing. AE events first weaken and then enhance with increasing σ2, and the proportion of shear cracks increases first and then decreases, indicating that the confining pressure gradually changes from the shear slip effect that controls crack offset to the damage effect that promotes crack tension with increasing σ2. In addition, the protective effect of confining pressure improves when σ3 increases.



2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yong-Sheng Liu ◽  
Zhuan-Zhuan Qiu ◽  
Xue-Cai Zhan ◽  
Hui-Nan Liu ◽  
Hai-Nan Gong

Abstract The layered composite rock was subjected to triaxial compression tests under constant confining pressure and the stress–strain curves under different confining pressures were obtained. Based on the continuous damage theory and statistical strength theory, it is assumed that the strength of rock microelements obeys Weibull distribution by taking the defects such as random micro-cracks in the rock into account. The statistical constitutive model of layered composite rock with damage correction is established by taking the axial strain of rock as a random distribution variable of microelement strength. The model parameters were determined by the curve fitting method and referring to some test parameters. By comparing the experimental data and the constitutive model curve, the rationality and feasibility of the model are verified.



2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yang Zhang ◽  
Yongjie Yang ◽  
Depeng Ma

In order to understand the influence of unloading path on the mechanical properties of coal, triaxial unloading confining pressure tests with different initial confining pressure and different unloading rate were carried out. The test results show that the triaxial unloading strength of coal samples under different test conditions is lower than conventional triaxial tests, but the brittleness characteristics are more obvious. This result indicates that the coal samples are easily damaged under unloading conditions. In the axial loading stage of the confinement unloading tests, the axial strain plays a leading role. However, during the confining pressure unloading stage, the circumferential deformation is large, which is the main deformation in this stage. Higher unloading rates of confining pressure are associated with shorter times between the peak stress position and sample complete failure. This shows that samples are more easily destroyed under higher unloading rates and the samples are more difficultly destroyed under lower unloading rates. In addition, with increasing unloading rate, the peak principal stress difference and confining pressure at failure decrease gradually, whereas the confining pressure difference at failure increases gradually. Compared with conventional triaxial compression tests, the cohesion of coal is reduced and the internal friction angle is increased under the condition of triaxial unloading test.



2016 ◽  
Vol 10 (1) ◽  
pp. 524-531 ◽  
Author(s):  
Yan Chen ◽  
Linjian Ma ◽  
Pengxian Fan ◽  
Xupu Yang ◽  
Lu Dong

Post-yield strength and deformation properties of rock salt are of great importance to the stability of rock surrounding deep underground storage caverns. Uniaxial and triaxial compression tests were performed to explore the volume change of Qianjiang rock salt under different confining stress states. The experimental results indicate that the dilatancy angle first increases rapidly then decreases gradually and drives to a constant with equivalent plastic strain. A higher confining stress results in a lower peak dilatancy angle. With the increase of confining pressure, the dilatancy angle decreases nonlinearly. Based on the volumetric-axial strain curves of rock salt, a mobilized dilatancy angle model taking into account the effects of confining pressure and the equivalent plastic strain was developed using nonlinear fitting. The new model was implemented in the software FLAC3D and verified effective to predict the volumetric dilatancy behavior of rock salt.



2015 ◽  
Vol 52 (7) ◽  
pp. 813-835 ◽  
Author(s):  
Poul V. Lade ◽  
Hamid Karimpour

Effects of strain rate on the stress–strain and subsequent stress relaxation behaviors have been studied by performing triaxial compression tests on dense Virginia Beach sand specimens at three different strain rates (ratio of 256 between the slowest and the fastest) under low and high confining pressures. For the tests performed under low confining pressure, the specimens that were initially sheared at a faster rate showed a slightly higher amount of stress relaxation, but almost identical stress–strain behaviors were achieved. For tests performed under high confining pressure, the same amount of strength was achieved at high axial strains (10% to 20%), but specimens sheared at higher strain rates showed a slightly stiffer stress–strain response at low axial strains (up to 10%). Similar to the tests performed under low confining pressure, higher strain rates produced higher amounts of stress relaxation to some extent. Effects of correction of axial strain due to load cell expansion and drainage condition during stress relaxation have also been studied and the results indicated that correction of axial strain and undrained condition will both increase the observed amount of stress relaxation. Moreover, a 1 day stress relaxation curve was obtained by connecting the ending stress–strain points of six stress relaxation tests initiated at different deviator stress levels, and this curve was found to be different from the 1 day creep curve obtained from a previous study. A long-term stress relaxation test was also performed, and it showed linear reduction of deviator stress with the logarithm of time during stress relaxation. Observations made are all aligned with the phenomenon of static fatigue and the proposed mechanism for time effects in granular materials.



Sign in / Sign up

Export Citation Format

Share Document