scholarly journals Experimental Study on Prevention of Calcium Carbonate Crystallizing in Drainage Pipe of Tunnel Engineering

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yuanfu Zhou ◽  
Xuefu Zhang ◽  
Liangwen Wei ◽  
Shiyang Liu ◽  
Bin Zhang ◽  
...  

If the tunnel drainage pipes are blocked, the supporting structures will be in danger because they would receive more force than before. In order to investigate the blocking problem, some laboratory tests and in situ experiments were carried out. Microtests showed that the main component of crystal is calcium carbonate. Calcium ions, carbonate ions, and bicarbonate ions of groundwater should be related to the crystal. The polyvinyl chloride pipe, hydrophobic antistatic self-cleaning coated pipe, silicone rubber coated pipe, pipe under electromagnetic field, polytetrafluoroethylene coated pipe, and polyethylene coated pipe were used in laboratory and field experiments. The laboratory results showed that the electromagnetic field may be the best method to prevent crystallization because the crystallizing weight was less than 0.1 g in 30 days. The field tests showed that there was less crystals on the inner surface of hydrophobic antistatic self-cleaning coated pipe than that of the polyvinyl chloride pipe and the polytetrafluoroethylene coated pipe. The crystallization prevention effects of the other experimental pipes need more studies to examine.

Weed Science ◽  
1979 ◽  
Vol 27 (5) ◽  
pp. 497-501 ◽  
Author(s):  
C. D. Boyette ◽  
G. E. Templeton ◽  
R. J. Smith

An indigenous, host-specific, pathogenic fungus that parasitizes winged waterprimrose [Jussiaea decurrens(Walt.) DC.] is endemic in the rice growing region of Arkansas. The fungus was isolated and identified asColletotrichum gloeosporioides(Penz.) Sacc. f.sp. jussiaeae(CGJ). It is highly specific for parasitism of winged waterprimrose and not parasitic on creeping waterprimrose (J. repensL. var.glabrescensKtze.), rice (Oryza sativaL.), soybeans [Glycine max(L.) Merr.], cotton (Gossypium hirsutumL.), or 4 other crops and 13 other weeds. The fungus was physiologically distinct from C.gloeosporioides(Penz.) Sacc. f. sp.aeschynomene(CGA), an endemic anthracnose pathogen of northern jointvetch[Aeschynomene virginica(L.) B.S.P.], as indicated by cross inoculations of both weeds. Culture in the laboratory and inoculation of winged waterprimrose in greenhouse, growth chamber and field experiments indicated that the pathogen was stable, specific, and virulent in a wide range of environments. The pathogen yielded large quantities of spores in liquid culture. It is suitable for control of winged waterprimrose. Winged waterprimrose and northern jointvetch were controlled in greenhouse and field tests by application of spore mixtures of CGJ and CGA at concentrations of 1 to 2 million spores/ml of each fungus in 94 L/ha of water; the fungi did not damage rice or nontarget crops.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1452
Author(s):  
Raluca-Maria Pârlici ◽  
Aurel Maxim ◽  
Stefania Mirela Mang ◽  
Ippolito Camele ◽  
Lucia Mihalescu ◽  
...  

Organic berry plantations have been gaining popularity among farmers during recent years. Even so, farmers experience serious challenges in disease control management, which is a concern in organic farming. Phragmidiumrubi-idaei (DC) P. Karst is the pathogen responsible for blackberry and raspberry rust disease, one of the most present and active diseases in plantations. The antifungal certified products found on the organic farming market offer the opportunity for an efficient control strategy over plant pathogens in fruit shrub plantations. In this study, 5 natural based products—namely Altosan, Mimox, Canelys, Zitron, and Zeolite—were tested for their fungistatic effect over P. rubi-idaei. The experiments were carried out under laboratory conditions, performing observations over the impact of organic products, used at different concentration levels, on rust conidia germination. Moreover, field experiments were conducted in order to evaluate the efficiency of different treatments for rust control on raspberry (‘Polka’, ‘Veten’ and ‘Heritage’) and blackberry (‘Thorn Free’, ‘Chester’ and ‘Loch Ness’) varieties. Data analysis based on ANOVA tests showed significant differences between the tested variants and the control sample at p < 0.001. Furthermore, LSD test confirmed differences between all substances tested (p < 0.005). The natural products Canelys (formulated with cinnamon) and Zytron (based on citrus extract) have proven the highest inhibitory capacity for conidia germination during in vitro tests registering values of 80.42% and 78.34%, respectively. The same high inhibitory rates against rust pathogen were kept also in the field tests using the same two natural-based products mentioned earlier. In addition, outcomes from this study demonstrated that Zeolite is not recommended for raspberry or blackberry rust control.


2013 ◽  
Vol 103 (6) ◽  
pp. 665-674 ◽  
Author(s):  
Á. Egri ◽  
M. Blahó ◽  
D. Száz ◽  
G. Kriska ◽  
J. Majer ◽  
...  

AbstractHost-seeking female tabanid flies, that need mammalian blood for the development of their eggs, can be captured by the classic canopy trap with an elevated shiny black sphere as a luring visual target. The design of more efficient tabanid traps is important for stock-breeders to control tabanids, since these blood-sucking insects can cause severe problems for livestock, especially for horse- and cattle-keepers: reduced meat/milk production in cattle farms, horses cannot be ridden, decreased quality of hides due to biting scars. We show here that male and female tabanids can be caught by a novel, weather-proof liquid-filled black tray laid on the ground, because the strongly and horizontally polarized light reflected from the black liquid surface attracts water-seeking polarotactic tabanids. We performed field experiments to reveal the ideal elevation of the liquid trap and to compare the tabanid-capturing efficiency of three different traps: (1) the classic canopy trap, (2) the new polarization liquid trap, and (3) the combination of the two traps. In field tests, we showed that the combined trap captures 2.4–8.2 times more tabanids than the canopy trap alone. The reason for the larger efficiency of the combined trap is that it captures simultaneously the host-seeking female and the water-seeking male and female tabanids. We suggest supplementing the traditional canopy trap with the new liquid trap in order to enhance the tabanid-capturing efficiency.


Author(s):  
Yu. I. Buryak ◽  
A. A. Skrynnikov

The article is devoted to the substantiation of the procedure for testing complex technical systems to assess the probability of performing the task, taking into account a priori data obtained from the results of modeling, field tests of components and prototypes, operation of analogues, etc. The conditions for the formation of a combined sample consisting of field experiments and experiments counted on the results of modeling are justified. Data uniformity is checked using the Student's criterion. The minimum volume of full-scale tests is determined by the requirement of equality of the amount of Fischer information about the estimated parameter obtained during full-scale tests and at the expense of a priori data A strategy for conducting field experiments is proposed, in which the required quality of evaluating the probability of completing the task is achieved with the minimum possible number of field experiments. At the first stage, a series of experiments with a volume equal to half of the required sample size is performed. At the second stage, the experiments are conducted sequentially with an assessment after each experiment of the requirements for the amount of information about the evaluated parameter and for the uniformity of data. Experiments are terminated when the specified requirements are met, and then a combined sample is formed, which is used to evaluate the probability of the system performing the task. A model example is considered. The estimation of the gain in the number of experiments performed at different probability values was carried out.


1969 ◽  
Vol 28 (1) ◽  
pp. 22-34
Author(s):  
Bernardo G. Capó

A new method of performing field experiments with relatively small numbers of treatments is described. The requirement to be fulfilled by the layouts of such field tests is specified and examples of possible designs for a 5-treatment experiment are illustrated. The theory of the procedure of calculation is discussed and a numerical example of said calculations is furnished in connection with the interpretation of a fertilizer experiment performed with cotton.


2021 ◽  
Vol 12 (5) ◽  
pp. 6393-6414

A scaling-up study integrating experimental and field experiments was managed to explore the most appropriate catalysis method to assist industries in getting rid of the Congo Red (CR) dye from industrial wastewater. The adsorption potential of kaolinite (K) modified by Ulva Lactuca (UL) was evaluated to eliminate CR dye from aqueous solutions. The novel kaolinite/alga nanocomposite (KUL) was synthesized following steps of the wet impregnation method and then subjected to characterization using different techniques. The newly reported KUL nanocomposite shows a significant increase in adsorption ability higher than that of K and UL. To research different experimental factors' effects, batch experiments were evaluated, and each of the kinetics/isotherms of CR adsorption were explored either. The CR removal% is clearly affected by catalyst dose, working temperature, and pH value with high percentage. The best temperature for CR adsorption onto KUL is 400C at pH>7. CR adsorption on KUL following the first-order diffusion model, while K and UL appeared to follow two different kinetic adsorption models depending on the CR concentration. Moreover, the field tests (scaling-up experiments) revealed optimistic results with 91% efficiency for KUL nano-adsorbents in eliminating mixed dyes from industrial wastewater, which means the foundation of novel environmentally benign nano-adsorbents to help in industrial wastewater recycling.


2019 ◽  
Vol 4 (27) ◽  
pp. eaav3041 ◽  
Author(s):  
Trygve O. Fossum ◽  
Glaucia M. Fragoso ◽  
Emlyn J. Davies ◽  
Jenny E. Ullgren ◽  
Renato Mendes ◽  
...  

Currents, wind, bathymetry, and freshwater runoff are some of the factors that make coastal waters heterogeneous, patchy, and scientifically interesting—where it is challenging to resolve the spatiotemporal variation within the water column. We present methods and results from field experiments using an autonomous underwater vehicle (AUV) with embedded algorithms that focus sampling on features in three dimensions. This was achieved by combining Gaussian process (GP) modeling with onboard robotic autonomy, allowing volumetric measurements to be made at fine scales. Special focus was given to the patchiness of phytoplankton biomass, measured as chlorophyll a (Chla), an important factor for understanding biogeochemical processes, such as primary productivity, in the coastal ocean. During multiple field tests in Runde, Norway, the method was successfully used to identify, map, and track the subsurface chlorophyll a maxima (SCM). Results show that the algorithm was able to estimate the SCM volumetrically, enabling the AUV to track the maximum concentration depth within the volume. These data were subsequently verified and supplemented with remote sensing, time series from a buoy and ship-based measurements from a fast repetition rate fluorometer (FRRf), particle imaging systems, as well as discrete water samples, covering both the large and small scales of the microbial community shaped by coastal dynamics. By bringing together diverse methods from statistics, autonomous control, imaging, and oceanography, the work offers an interdisciplinary perspective in robotic observation of our changing oceans.


2019 ◽  
Vol 220 (3) ◽  
pp. 1463-1480
Author(s):  
S Szalai ◽  
K Szokoli ◽  
E Prácser ◽  
M Metwaly ◽  
M Zubair ◽  
...  

SUMMARY While traditional geoelectric array configurations, such as the Wenner–Schlumberger or the dipole–dipole, can provide very good images of 1-D or robust 2-D structures, they are not sufficiently sensitive to those inhomogeneities that have a small effect on the surface electrical potential distribution. The detection and description of such inhomogeneities become possible by applying quasi-null arrays, which provide very small (close to zero) signals above a homogeneous half-space. The imaging properties of the members of an array series containing such arrays, the so-called γ11n arrays (n = 1–7), are demonstrated and compared to those of the most popular traditional arrays. Although the field applicability of the quasi-null arrays has been heavily questioned, it was demonstrated by our quasi-field analogue modelling experiments. The quasi-field tests also validated all of the numerical modelling results as follows: (1) many or all of the γ11n arrays were able to detect prisms and vertical sheets located at depths larger than those detectable by traditional geoelectric arrays, including the optimized Stummer configuration; (2) the horizontal resolution of the γ11n arrays proved to be better than the horizontal resolution of traditional arrays; (3) with n increasing, the γ11n arrays proved to be less sensitive to 1-D, but more sensitive to 2-D bodies. In case of high n values, the γ11n arrays may even be entirely insensitive to any 1-D structure. On the basis of the quasi-field experiments, γ11n arrays are expected to be very efficient to indicate bodies, or variations in time that only have a small impact on the surface electrical potential distribution (e.g. caves, mines, tunnels, tubes, cables, fractures, dykes), or small changes in the subsurface conditions (monitoring of dams or waste deposits). Data acquisition by both a traditional and a γ11n array, individual inversion of their data, and a joint interpretation of the results are recommended to obtain both a robust image and fine details of the subsurface.


Sign in / Sign up

Export Citation Format

Share Document