scholarly journals Chemical and Noble Gas Isotope Compositions of Formation Gases from a 3 km Deep Scientific Borehole in the Koyna Seismogenic Zone, Western India

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Nagaraju Podugu ◽  
Satrughna Mishra ◽  
Thomas Wiersberg ◽  
Sukanta Roy

A 3 km deep research borehole KFD1 was drilled in the Koyna reservoir-triggered seismicity region, Western India, between December 2016 and May 2017. The 1967 M 6.3 Koyna earthquake had generated a NNE-SSW trending surface fissure zone in the Nanel-Donichawadi-Kadoli sector. KFD1 is located ~5 km south of Kadoli along the trend of the Donichawadi fault zone. Online gas monitoring was carried out during drilling of KFD1 from 1315 m to 2831 m depth to sample and study the composition of crustal gases. Formation gases CO2, CH4, H2, and He were only observed during water flushing of ~100 m intervals following coring runs. Laboratory analyses of gas samples collected between 1737 m and 2831 m depth revealed concentrations of up to 1200 ppmv CO2, 186 ppmv CH4, 139 ppmv H2, and 12.8 ppmv He. Zones enriched in gases are mostly below the 2100 m depth with significant He enhancement ranging from 4.6 to 7.6 ppmv above the atmospheric value. The He-rich zones correlate well with the zones of anomalous physical and mechanical properties identified from geophysical logs and are characterized by high fracture density as revealed from borehole images, indicating that the borehole punctured multiple fracture zones. The helium concentrations are consistent with those previously observed over the surface fissures near Kadoli, suggesting a southward extension of the Donichawadi fault zone up to the KFD1 site and confirming that the fault zone is permeable even after 50 years of the 1967 Koyna earthquake. 3He/4He ratios of eleven gas samples fall between 0.426±0.022 and 0.912±0.059 Ra, with 4He/20Ne values between 0.3449±0.0091 and 0.751±0.020. Air-corrected helium isotope ratios indicate that helium is a mixture of atmospheric and crustal radiogenic components but no mantle contribution within 2σ analytical uncertainties.

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 250
Author(s):  
Chuanpeng Liu ◽  
Wenjie Shi ◽  
Junhao Wei ◽  
Huan Li ◽  
Aiping Feng ◽  
...  

The Longquanzhan deposit is one of the largest gold deposits in the Yi-Shu fault zone (central section of the Tan-Lu fault zone) in Shandong Province, China. It is an altered-rock type gold deposit in which ore bodies mainly occur at the contact zone between the overlying Cretaceous rocks and the underlying Neoarchean gneissic monzogranite. Shi et al. reported that this deposit formed at 96 ± 2 Ma using pyrite Rb–Sr dating method and represents a new gold mineralization event in the Shandong Province in 2014. In this paper, we present new He–Ar–S isotopic compositions to further decipher the sources of fluids responsible for the Longquanzhan gold mineralization. The results show that the δ34S values of pyrites vary between 0.9‰ and 4.4‰ with an average of 2.3‰. Inclusion-trapped fluids in ore sulfides have 3He/4He and 40Ar/36Ar ratios of 0.14–0.78 Ra and 482–1811, respectively. These isotopic data indicate that the ore fluids are derived from a magmatic source, which is dominated by crustal components with minor mantle contribution. Air-saturated water may be also involved in the hydrothermal system during the magmatic fluids ascending or at the shallow deposit site. We suggest that the crust-mantle mixing signature of the Longquanzhan gold deposit is genetically related to the Late Cretaceous lithospheric thinning along the Tan-Lu fault zone, which triggers constantly uplifting of the asthenosphere surface and persistent ascending of the isotherm plane to form the gold mineralization-related crustal level magma sources. This genetic model can be applied, to some extent, to explain the ore genesis of other deposits near or within the Tan-Lu fault belt.


2021 ◽  
Author(s):  
Ake Fagereng ◽  
Adam Beall

<p>Current conceptual fault models define a seismogenic zone, where earthquakes nucleate, characterised by velocity-weakening fault rocks in a dominantly frictional regime. The base of the seismogenic zone is commonly inferred to coincide with a thermally controlled onset of velocity-strengthening slip or distributed viscous deformation. The top of the seismogenic zone may be determined by low-temperature diagenetic processes and the state of consolidation and alteration. Overall, the seismogenic zone is therefore described as bounded by transitions in frictional and rheological properties. These properties are relatively well-determined for monomineralic systems and simple, planar geometries; but, many exceptions, including deep earthquakes, slow slip, and shallow creep, imply processes involving compositional, structural, or environmental heterogeneities. We explore how such heterogeneities may alter the extent of the seismogenic zone.</p><p> </p><p>We consider mixed viscous-frictional deformation and suggest a simple rule of thumb to estimate the role of heterogeneities by a combination of the viscosity contrast within the fault, and the ratio between the bulk shear stress and the yield strength of the strongest fault zone component. In this model, slip behaviour can change dynamically in response to stress and strength variations with depth and time. We quantify the model numerically, and illustrate the idea with a few field-based examples: 1) earthquakes within the viscous regime, deeper than the thermally-controlled seismogenic zone, can be triggered by an increase in the ratio of shear stress to yield strength, either by increased fluid pressure or increased local stress; 2) there is commonly a depth range of transitional behaviour at the base of the seismogenic zone – the thickness of this zone increases markedly with increased viscosity contrast within the fault zone; and 3) fault zone weakening by phyllosilicate growth and foliation development increases viscosity ratio and decreases bulk shear stress, leading to efficient, stable, fault zone creep. These examples are not new interpretations or observations, but given the substantial complexity of heterogeneous fault zones, we suggest that a simplified, conceptual model based on basic strength and stress parameters is useful in describing and assessing the effect of heterogeneities on fault slip behaviour.         </p>


2021 ◽  
Author(s):  
Mark W. Fellgett ◽  
Richard Haslam

<p>The geothermal potential of the granites of SW England has long been known. The first significant exploration of the resource was in the Carnmenellis Granite under the ‘Hot Dry Rock (HDR) Project’ during the 80’s and early 90’s. Following completion of the HDR project there was little further exploration in the area for geothermal power generation. Recently however, development of the United Downs Deep Geothermal Power (UDDGP) project marks a significant leap forward, and this aims to be the first commercial project to explore deep geothermal power generation in SW England.</p><p> </p><p>The UDDGP project targets the Porthtowan Fault zone, a regional scale NW to NNW striking strike-slip fault that is inferred to transect the NE margin of the Carnmenellis Granite. Two directional wells were drilled to intersect this fault zone, maximising the surface area of the fault exposed. A production well with a measured depth of 5275 m true vertical depth of 5054 m and an injection well vertically above the production well at a measured depth of 2393 m and a true vertical depth of 2214 m. A full suite of geophysical wireline logs were collected for the production well, including borehole image logs from 900 mMD to 5160 mMD (900 - 4097mTVD).</p><p> </p><p>Interpretation of the borehole imaging across the 4260 m identified a total of 12031 discontinuities. The features were classified using a simple schema and provide new insights into the complex nature of faulting and fracturing within the Granite. Stress field indicators including Borehole Breakouts and Drilling Induced Tensile Fractures (DIFs) were also interpreted.</p><p> </p><p>The orientations of the borehole breakouts and DIFs are consistent and are comparable to previous measurements in the region and the regional stress field, indicating the direction of maximum compression is, approximately horizontal trending towards 320°.</p><p> </p><p>The data show variable fracture density along the imaged section of the well with the maximum density tentatively associated with discreet fault zones. At least 3 fracture sets are identified with the largest concentration of fractures approximately parallel to inferred Porthtowan Fault Zone, suggesting UD-1 intersected the target fault zone. Key fracture attributes are explored and discussed including orientation, spacing, intensity, and spatial correlation.</p>


2019 ◽  
Vol 200 ◽  
pp. 37-53 ◽  
Author(s):  
Peng Zhang ◽  
Lin-Lin Kou ◽  
Yan Zhao ◽  
Zhong-Wei Bi ◽  
De-Ming Sha ◽  
...  

2012 ◽  
Vol 52 (1) ◽  
pp. 213 ◽  
Author(s):  
Hani Abul Khair ◽  
Guillaume Backé ◽  
Rosalind King ◽  
Simon Holford ◽  
Mark Tingay ◽  
...  

The future success of both enhanced (engineered) geothermal systems and shale gas production is reliant on the development of reservoir stimulation strategies that suit the local geo-mechanical conditions of the prospects. The orientation and nature of the in-situ stress field and pre-existing natural fracture networks in the reservoir are among the critical parameters that will control the quality of the stimulation program. This study provides a detailed investigation into the nature and origin of natural fractures in the area covered by the Moomba–Big Lake 3D seismic survey, in the southwest termination of the Nappamerri Trough of the Cooper Basin. These fractures are imaged by both borehole image logs and complex multi-traces seismic attributes (e.g. dip-steered most positive curvature and dip-steered similarity), are pervasive throughout the cube, and exhibit a relatively consistent northwest–southeast orientation. Horizon extraction of the seismic attributes reveal a strong variation in the spatial distribution of the fractures. In the acreage of interest, fracture density is at its highest in the vicinity of faults and on top of tight antiforms. This study also suggests a good correlation between high fracture density and high gamma ray values. The correlation between high fracture density and shale content is somewhat counterintuitive, as shale is expected to have a higher tensile and compressive strengths at shallow depths and typically contain fewer fractures (Lin, 1983). At large depths, however—and due to sandstone diagenesis and cementation—shale has lower tensile and compressive strength than sandstone and is expected to be more fractured (Lin, 1983). A similar correlation has been noted in other Australian Basins (e.g. Northern Perth Basin). Diagenetic effects, pore pressure, stiffness, variations in tensile versus compressive strength of the shale and the sandstone may explain this disparity.


2020 ◽  
Author(s):  
Antoine Haddad ◽  
Athanassios Ganas ◽  
Ioannis Kassaras ◽  
Matteo Lupi

<p>From July 2016 to May 2017, we deployed a local seismic network composed of 15 short-period seismic stations to investigate the ongoing seismotectonic deformation of Western Greece with emphasis on the region between Ambrakikos Gulf (to the north) and Kyparissia (to the south). The network was deployed to investigate the behavior of key crustal blocks in western Greece, such as the Ionian-Akarnania Block (IAB).</p><p>After applying automatic P- and S- wave phase picking we located 1200 local earthquakes using HypoInverse and constrained five 1D velocity model by applying the error minimization technique. Events were relocated using HypoDD and 76  focal mechanisms were computed for events with magnitudes down to M<sub>L</sub> 2.3 using first motion polarities.</p><p>We combined the calculated focal mechanisms and the relocated seismicity to shed light on the IAB block boundaries. Three boundaries highlighted by previous studies were also evidenced :</p><p>-The north-west margin of the block, the Cephalonia Transform Fault, Europe‘s most active fault. NW-striking dextral strike-slip motion was recognized for this fault near the Gulf of Myrtos and the town of Fiskardo.</p><p>- The south-east margin is the Movri-Amaliada right-lateral Fault Zone, activated during the Movri Mt. M<sub>w</sub> 6.4 earthquake sequence.</p><p>- The Ambrakikos Gulf (a young E-W rift) and the NW-striking left-lateral Katouna-Stamna Fault zone depict the north and north-eastern margins of the IAB block.</p><p>Seismicity lineaments and focal mechanisms define theKyllini-Cephalonia left-lateral fault, which is also highlighted by bathymetry data. We interpret this fault as the south-western margin of IAB separating an aseismic area observed between Cephalonia and Akarnania from a seismogenic zone north of Zakynthos Island and bridging NW Peloponnese with Cephalonia.</p>


Sign in / Sign up

Export Citation Format

Share Document