scholarly journals Antimicrobial Activity of Lactic Acid Bacteria Starters against Acid Tolerant, Antibiotic Resistant, and Potentially Virulent E. coli Isolated from a Fermented Sorghum-Millet Beverage

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Stellah Byakika ◽  
Ivan Muzira Mukisa ◽  
Robert Mugabi ◽  
Charles Muyanja

Bacterial contamination of fermented foods is a serious global food safety challenge that requires effective control strategies. This study characterized presumptive E. coli isolated from Obushera, a traditional fermented cereal beverage from Uganda. Thereafter, the antimicrobial effect of lactic acid bacteria (LAB) previously isolated from Obushera, against the E. coli, was examined. The presumptive E. coli was incubated in brain heart infusion broth (pH = 3.6) at 25°C for 48 h. The most acid-stable strains were clustered using (GTG)5 rep-PCR fingerprinting and identified using 16S rRNA sequencing. E. coli was screened for Shiga toxins (Stx 1 and Stx 2) and Intimin (eae) virulence genes as well as antibiotic resistance. The spot-on-the-lawn method was used to evaluate antimicrobial activity. Eighteen isolates were acid stable and are identified as E. coli, Shigella, and Lysinibacillus. The Stx 2 gene and antibiotic resistance were detected in some E. coli isolates. The LAB were antagonistic against the E. coli. Lactic acid bacteria from traditional fermented foods can be applied in food processing to inhibit pathogens. Obushera lactic acid bacteria could be used to improve the safety of fermented foods.

2019 ◽  
Vol 9 (3) ◽  
pp. 601 ◽  
Author(s):  
Alicia Cervantes-Elizarrarás ◽  
Nelly Cruz-Cansino ◽  
Esther Ramírez-Moreno ◽  
Vicente Vega-Sánchez ◽  
Norma Velázquez-Guadarrama ◽  
...  

Probiotics can act as a natural barrier against several pathogens, such Helicobacter pylori, a bacterium linked to stomach cancer. The aim of the present study was to isolate and identify lactic acid bacteria (LAB) from pulque and aguamiel, and evaluate their probiotic potential and antimicrobial effect on Escherichia coli, Staphylococcus aureus, and Helicobacter pylori. Ten isolates were selected and evaluated for in vitro resistance to antibiotics and gastrointestinal conditions, and antimicrobial activity against E. coli and S. aureus and the effect on H. pylori strains. 16S rRNA identification was performed. Ten potential probiotic isolates were confirmed as belonging to the genera Lactobacillus and Pediococcus. All the strains were susceptible to clinical antibiotics, except to vancomycin. Sixty percent of the isolates exhibited antimicrobial activity against E. coli and S. aureus. The growth of H. pylori ATCC 43504 was suppressed by all the LAB, and the urease activity from all the H. pylori strains was inhibited, which may decrease its chances for survival in the stomach. The results suggest that LAB isolated from pulque and aguamiel could be an option to establish a harmless relationship between the host and H. pylori, helping in their eradication therapy.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 271
Author(s):  
Jelena Stupar ◽  
Ingunn Grimsbo Holøymoen ◽  
Sunniva Hoel ◽  
Jørgen Lerfall ◽  
Turid Rustad ◽  
...  

Biopreservation is a food preservation technology using microorganisms and/or their inherent antimicrobial metabolites to inhibit undesirable microorganisms. The aim of the present study was to explore the diversity and antimicrobial activity of lactic acid bacteria (LAB) strains (n = 99) isolated from ready-to-eat (RTE) seafood (cold-smoked salmon (CSS), gravlax, and sushi) towards two strains of Listeria monocytogenes (CCUG 15527, F11), Listeria innocua (CCUG 15531) and Escherichia coli (CCUG 38079). The LAB strains were assigned to five different genera (Carnobacterium spp., Lactobacillus spp., Leuconostoc spp., Weissella spp., and Enterococcus sp.) by sequencing a 1150 bp stretch of the 16S rRNA gene. A significant association between the seafood source and the distribution of LAB genera was found (p < 0.001), of which Leuconostoc spp. were most prevalent in sushi and Carnobacterium sp. and Lactobacillus sp. were most frequently isolated from CSS and gravlax. Antimicrobial activity among the LAB was significantly affected by LAB genera (F= 117.91, p < 0.001, one-way ANOVA), product of origin (F = 3.47, p < 0.05), and target (F = 4.64, p = 0.003). LAB isolated from sushi demonstrated a significantly higher antimicrobial effect than LAB from CSS and gravlax (p < 0.05). In general, a significantly higher antimicrobial activity was found towards Listeria spp. than E. coli (p < 0.05). However, Leuconostoc spp. demonstrated similar antimicrobial effects towards E. coli and Listeria spp., except for L. monocytogenes F11 being more sensitive (p < 0.05). This study suggested that seafood-derived LAB strains could be selected for technological application in RTE seafood systems.


2020 ◽  
Vol 12 (4) ◽  
pp. 357-365
Author(s):  
H.I. Atta ◽  
A. Gimba ◽  
T. Bamgbose

Abstract. The production of bacteriocins by lactic acid bacteria affords them the ability to inhibit the growth of bacteria; they are particularly important in the biocontrol of human and plant pathogens. Lactic acid bacteria have been frequently isolated from fermented foods due to the high acidity these foods contain. In this study, lactic acid bacteria were isolated from garri, a popular Nigerian staple food, which is fermented from cassava, and their antagonistic activity against clinical and environmental isolates of Escherichia coli was determined. The species of Lactobacillus isolated include: Lactobacillus plantarum (50%), Lactobacillus fermentum (20%), Lactobacillus acidophilus (20%), and Lactobacillus salivarius (10%). Growth inhibition of the strains of E.coli was observed in Lactobacillus plantarum that inhibited the growth of both. The clinical and environmental isolates of E. coli were inhibited by Lactobacillus plantarum, while Lactobacillus acidophilus showed activity against only the clinical isolate. The greatest zone of inhibition against the strains of E. coli was recorded by Lactobacillus acidophilus (22.7±1.53 mm). The bacteriocins produced by Lactobacillus species have a good potential in the biocontrol of pathogens, and should be the focus of further studies on antibiotic resistant bacteria.


2003 ◽  
Vol 69 (3) ◽  
pp. 1797-1799 ◽  
Author(s):  
Torben Lüders ◽  
Gunn Alice Birkemo ◽  
Gunnar Fimland ◽  
Jon Nissen-Meyer ◽  
Ingolf F. Nes

ABSTRACT The antimicrobial effect obtained upon combining the prokaryotic antimicrobial peptides (AMPs; more commonly referred to as bacteriocins) pediocin PA-1, sakacin P, and curvacin A (all produced by lactic acid bacteria [LAB]) with the eukaryotic AMP pleurocidin (from fish) has been investigated. The three LAB AMPs alone were active against gram-positive Listeria ivanovii bacteria at nanomolar concentrations, whereas they were inactive against gram-negative Escherichia coli bacteria. Pleurocidin alone was active against both of these types of bacteria at micromolar concentrations. Little if any synergy between the LAB AMPs and pleurocidin against the gram-positive L. ivanovii strain was obtained. In contrast, the LAB AMPs and pleurocidin acted highly synergistically against the gram-negative E. coli strain. Nanomolar concentrations of LAB AMPs increased the growth inhibitory potency of pleurocidin by about fourfold. When micromolar concentrations of LAB AMPs were combined with 2 μg of pleurocidin/ml, 100% growth inhibition was attained, whereas pleurocidin alone at a concentration of 2 μg/ml gave no growth inhibition. Most noteworthy, when high concentrations (128 μg/ml) of pleurocidin in the absence of LAB AMPs were used over a long period of incubation (1 week), some growth of E. coli was observed, whereas 16 μg of pleurocidin/ml completely abolished growth in the presence of 64 to 128 ng of LAB AMPs/ml over the same period of time. The results clearly demonstrate that combining eukaryotic and prokaryotic AMPs can greatly increase the specific activity and broaden the target-cell range of these peptides.


2020 ◽  
Vol 2 ◽  
pp. 00002
Author(s):  
Dyah Fitri Kusharyati ◽  
Pancrasia Maria Hendrati ◽  
Dini Ryandini ◽  
Tsani Abu Manshur ◽  
Meilany Ariati Dewi ◽  
...  

<p class="Abstract"><i>Bifidobacterium</i> is a group of Lactic Acid Bacteria (LAB) that commonly found in the gastrointestinal tract and vagina. LAB has many health benefits, such as produce an antimicrobial substance against a pathogen. This research aims to isolate <i>Bifidobacterium</i> from an infant’s feces and know its antimicrobial activity against <i>Escherichia coli</i> and <i>Candida albicans.</i> A total of 5 isolates <i>Bifidobacterium</i> spp. were isolated from the sample. <span lang="EN">The largest inhibitory activity against <i>E. coli</i> was shown by isolate Bb3F, with the inhibitory zone of 10.80 mm. While the largest inhibition activity against <i>C. albicans</i> was shown by isolate Bb1B and Bb3F with the inhibitory zone of 9.70 mm.</span><o:p></o:p></p>


Author(s):  
ROSALINA YULIANA AYEN ◽  
ENDANG KUSDIYANTINI ◽  
SRI PUJIYANTO

Objective: This research aimed to isolate, determine the characteristics of lactic acid bacteria (LAB) of Sui Wu’u from Bajawa, Nusa Tenggara Timur and identify LAB using 16S rRNA potential as antimicrobial activity against pathogenic bacteria. Methods: Sui Wu’u which has been stored for 6 months was obtained from Bajawa district, inoculated on de Man Rogosa-Sharpe Agar (Merck) + 0.5% CaCO3, purification of LAB, characterization of selected isolates, biochemical test, tolerance test for pH, viability to test temperature, and content NaCl, determination of antimicrobial action by the agar well disk diffusion method using antibiotic (Amoxicillin) as a control and as indicator bacteria (Staphylococcus aureus and Escherichia coli) and isolation of genomic 16S rRNA; molecular identification. Results: Based on research results obtained five isolates of LAB, Gram staining the LAB isolated from Sui Wu’u showed that the isolated bacteria (bacilli and coccus) are Gram-positive, catalase-negative and the isolates have tolerance of viability at temperatures of 10°C, 45°C, and 50°C and to salinitas of 4% and 6.5%. The inhibitory zone LAB isolates (2PKT) against E. coli bacteria (20 mm) and S. aureus (12 mm), and (2PKB) against E. coli bacteria (17 mm) and S. aureus (10 mm). The two selected isolates were identified as Lactobacillus fermentum strain HB bacteria with 100% identification value and 98.93% query cover and L. fermentum strain HT with 100% identification value and 99.23% query cover. Conclusion: L. fermentum from Sui Wu’u has antibacterial activity against Staphylococcus aureus and Escherichia coli.


2013 ◽  
Vol 33 (2) ◽  
pp. 114-120 ◽  
Author(s):  
Hongmei Zhang ◽  
Lisi Xie ◽  
Wenyan Zhang ◽  
Wenyuan Zhou ◽  
Jianyu Su ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document