scholarly journals In Vitro Probiotic Potential of Lactic Acid Bacteria Isolated from Aguamiel and Pulque and Antibacterial Activity Against Pathogens

2019 ◽  
Vol 9 (3) ◽  
pp. 601 ◽  
Author(s):  
Alicia Cervantes-Elizarrarás ◽  
Nelly Cruz-Cansino ◽  
Esther Ramírez-Moreno ◽  
Vicente Vega-Sánchez ◽  
Norma Velázquez-Guadarrama ◽  
...  

Probiotics can act as a natural barrier against several pathogens, such Helicobacter pylori, a bacterium linked to stomach cancer. The aim of the present study was to isolate and identify lactic acid bacteria (LAB) from pulque and aguamiel, and evaluate their probiotic potential and antimicrobial effect on Escherichia coli, Staphylococcus aureus, and Helicobacter pylori. Ten isolates were selected and evaluated for in vitro resistance to antibiotics and gastrointestinal conditions, and antimicrobial activity against E. coli and S. aureus and the effect on H. pylori strains. 16S rRNA identification was performed. Ten potential probiotic isolates were confirmed as belonging to the genera Lactobacillus and Pediococcus. All the strains were susceptible to clinical antibiotics, except to vancomycin. Sixty percent of the isolates exhibited antimicrobial activity against E. coli and S. aureus. The growth of H. pylori ATCC 43504 was suppressed by all the LAB, and the urease activity from all the H. pylori strains was inhibited, which may decrease its chances for survival in the stomach. The results suggest that LAB isolated from pulque and aguamiel could be an option to establish a harmless relationship between the host and H. pylori, helping in their eradication therapy.

2003 ◽  
Vol 66 (1) ◽  
pp. 3-12 ◽  
Author(s):  
TAE-SEOK KIM ◽  
JI-WOON HUR ◽  
MYEONG-AE YU ◽  
CHAN-ICK CHEIGH ◽  
KYUNG-NAM KIM ◽  
...  

Antimicrobial activity of seven bacteriocins produced by lactic acid bacteria against Helicobacter pylori strains (ATCC 43504, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH [DSM] 4867, DSM 9691, and DSM 10242) was investigated in vitro using a broth microdilution assay. The bacteriocins chosen for the study were nisin A; lacticins A164, BH5, JW3, and NK24; pediocin PO2; and leucocin K. Antimicrobial activity of the bacteriocins varied among the H. pylori strains tested, of which strain ATCC 43504 was the most tolerant. Among the bacteriocins tested, lacticins A164 and BH5 produced by Lactococcus lactis subsp. lactis A164 and L. lactis BH5, respectively, showed the strongest antibacterial activity against H. pylori strains. MICs of the lacticins against H. pylori strains, when assessed by the critical dilution micromethod, ranged from 0.097 to 0.390 mg/liter (DSM strains) or from 12.5 to 25 mg/liter (ATCC 43504), supporting the strain-dependent sensitivity of the pathogen. Pediocin PO2 was less active than the lacticins against four strains of H. pylori, and leucocin K was the least active peptide, with no inhibition toward H. pylori ATCC 43504. Anti-Helicobacter activity of lacticin A164 was dependent on initial inoculum size as well as concentration of the bacteriocin added.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Stellah Byakika ◽  
Ivan Muzira Mukisa ◽  
Robert Mugabi ◽  
Charles Muyanja

Bacterial contamination of fermented foods is a serious global food safety challenge that requires effective control strategies. This study characterized presumptive E. coli isolated from Obushera, a traditional fermented cereal beverage from Uganda. Thereafter, the antimicrobial effect of lactic acid bacteria (LAB) previously isolated from Obushera, against the E. coli, was examined. The presumptive E. coli was incubated in brain heart infusion broth (pH = 3.6) at 25°C for 48 h. The most acid-stable strains were clustered using (GTG)5 rep-PCR fingerprinting and identified using 16S rRNA sequencing. E. coli was screened for Shiga toxins (Stx 1 and Stx 2) and Intimin (eae) virulence genes as well as antibiotic resistance. The spot-on-the-lawn method was used to evaluate antimicrobial activity. Eighteen isolates were acid stable and are identified as E. coli, Shigella, and Lysinibacillus. The Stx 2 gene and antibiotic resistance were detected in some E. coli isolates. The LAB were antagonistic against the E. coli. Lactic acid bacteria from traditional fermented foods can be applied in food processing to inhibit pathogens. Obushera lactic acid bacteria could be used to improve the safety of fermented foods.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 271
Author(s):  
Jelena Stupar ◽  
Ingunn Grimsbo Holøymoen ◽  
Sunniva Hoel ◽  
Jørgen Lerfall ◽  
Turid Rustad ◽  
...  

Biopreservation is a food preservation technology using microorganisms and/or their inherent antimicrobial metabolites to inhibit undesirable microorganisms. The aim of the present study was to explore the diversity and antimicrobial activity of lactic acid bacteria (LAB) strains (n = 99) isolated from ready-to-eat (RTE) seafood (cold-smoked salmon (CSS), gravlax, and sushi) towards two strains of Listeria monocytogenes (CCUG 15527, F11), Listeria innocua (CCUG 15531) and Escherichia coli (CCUG 38079). The LAB strains were assigned to five different genera (Carnobacterium spp., Lactobacillus spp., Leuconostoc spp., Weissella spp., and Enterococcus sp.) by sequencing a 1150 bp stretch of the 16S rRNA gene. A significant association between the seafood source and the distribution of LAB genera was found (p < 0.001), of which Leuconostoc spp. were most prevalent in sushi and Carnobacterium sp. and Lactobacillus sp. were most frequently isolated from CSS and gravlax. Antimicrobial activity among the LAB was significantly affected by LAB genera (F= 117.91, p < 0.001, one-way ANOVA), product of origin (F = 3.47, p < 0.05), and target (F = 4.64, p = 0.003). LAB isolated from sushi demonstrated a significantly higher antimicrobial effect than LAB from CSS and gravlax (p < 0.05). In general, a significantly higher antimicrobial activity was found towards Listeria spp. than E. coli (p < 0.05). However, Leuconostoc spp. demonstrated similar antimicrobial effects towards E. coli and Listeria spp., except for L. monocytogenes F11 being more sensitive (p < 0.05). This study suggested that seafood-derived LAB strains could be selected for technological application in RTE seafood systems.


2021 ◽  
Vol 22 (11) ◽  
pp. 5650
Author(s):  
Samantha A. Whiteside ◽  
Mahi M. Mohiuddin ◽  
Sargon Shlimon ◽  
Jaspreet Chahal ◽  
Chad W. MacPherson ◽  
...  

Helicobacter pylori is a prevalent bacterium that can cause gastric ulcers and cancers. Lactic acid bacteria (LAB) ameliorate treatment outcomes against H. pylori, suggesting that they could be a source of bioactive molecules usable as alternatives to current antibiotics for which resistance is mounting. We developed an in vitro framework to compare the anti-H. pylori properties of 25 LAB and their secretions against H. pylori. All studies were done at acidic and neutralized pH, with or without urea to mimic various gastric compartments. Eighteen LAB strains secreted molecules that curtailed the growth of H. pylori and the activity was urea-resistant in five LAB. Several LAB supernatants also reduced the urease activity of H. pylori. Pre-treatment of H. pylori with acidic LAB supernatants abrogated its flagella-mediated motility and decreased its ability to elicit pro-inflammatory IL-8 cytokine from human gastric cells, without reverting the H. pylori-induced repression of other pro-inflammatory cytokines. This study identified the LAB that have the most anti-H. pylori effects, decreasing its viability, its production of virulence factors, its motility and/or its ability to elicit pro-inflammatory IL-8 from gastric cells. Once identified, these molecules can be used as alternatives or complements to current antibiotics to fight H. pylori infections.


Microbiology ◽  
2021 ◽  
Vol 167 (11) ◽  
Author(s):  
Alberto Gonçalves Evangelista ◽  
Jessica Audrey Feijó Corrêa ◽  
João Vitor Garcia dos Santos ◽  
Eduardo Henrique Custódio Matté ◽  
Mônica Moura Milek ◽  
...  

The genus Salmonella is closely associated with foodborne outbreaks and animal diseases, and reports of antimicrobial resistance in Salmonella species are frequent. Several alternatives have been developed to control this pathogen, such as cell-free supernatants (CFS). Our objective here was to evaluate the use of lactic acid bacteria (LAB) CFS against Salmonella in vitro. Seventeen strains of LAB were used to produce CFS, and their antimicrobial activity was screened towards six strains of Salmonella . In addition, CFS were also pH-neutralized and/or boiled. Those with the best results were lyophilized. MICs of lyophilized CFS were 11.25–22.5 g l–1. Freeze-dried CFS were also used to supplement swine and poultry feed (11.25 g kg–1) and in vitro simulated digestion of both species was performed, with Salmonella contamination of 5×106 and 2×105 c.f.u. g−1 of swine and poultry feed, respectively. In the antimicrobial screening, all acidic CFS were able to inhibit the growth of Salmonella . After pH neutralization, Lactobacillus acidophilus Llorente, Limosilactobacillus fermentum CCT 1629, Lactiplantibacillus plantarum PUCPR44, Limosilactobacillus reuteri BioGaia, Lacticaseibacillus rhamnosus ATCC 7469 and Pediococcus pentosaceus UM116 CFS were the only strains that partially maintained their antimicrobial activity and, therefore, were chosen for lyophilization. In the simulated swine digestion, Salmonella counts were reduced ≥1.78 log c.f.u. g–1 in the digesta containing either of the CFS. In the chicken simulation, a significant reduction was obtained with all CFS used (average reduction of 0.59±0.01 log c.f.u. ml–1). In general, the lyophilized CFS of L. fermentum CCT 1629, L. rhamnosus ATCC 7469 and L. acidophilus Llorente presented better antimicrobial activity. In conclusion, CFS show potential as feed additives to control Salmonella in animal production and may be an alternative to the use of antibiotics, minimizing problems related to antimicrobial resistance.


2021 ◽  
Vol 31 (4) ◽  
pp. 2
Author(s):  
IDSAP Peramiarti

Diarrhea is defecation with a frequency more often than usual (three times or more) a day (10 mL/kg/day) with a soft or liquid consistency, even in the form of water alone. Pathogenic bacteria, such as Escherichia coli, Salmonella typhimurium, and Shigella sp., play a role in many cases, to which antibiotics are prescribed as the first-line therapy. However, since antibiotic resistance cases are often found, preventive therapies are needed, such as consuming yogurt, which is produced through a fermentation process by lactic acid bacteria (LAB). This research aimed to determine the activity of lactic acid bacteria (Liactobacillus bulgaricus and Streptococcus thermophilus) in yogurt in inhibiting the growth of the pathogenic bacteria E. coli, S. typhimurium, and Shigella sp. The research applied in vitro with the liquid dilution test method and the true experimental design research method with post-test-only and control group design. The design was used to see the inhibitory effect of yogurt LAB on the growth of E. coli, S. typhimurium, and Shigell sp. to compare the effect of several different yogurt concentrations, namely 20%, 40%, 60%, and 80%. The results of the Least Significance Different analysis showed that there was a significant difference between yogurt with a concentration of 0% and that with various concentrations in inhibiting the growth of E. coli, S. typhimurium, and Shigella sp. with a p-value of &lt;0.05. Whereas, there was no significant difference in the various concentrations of yogurt in inhibiting the growth of the three kinds of bacteria with a p-value of &gt; 0.05.<p class="Default" align="center"> </p>


2003 ◽  
Vol 47 (12) ◽  
pp. 3780-3783 ◽  
Author(s):  
Yvonne Guttner ◽  
Helen M. Windsor ◽  
Charlie H. Viiala ◽  
Leon Dusci ◽  
Barry J. Marshall

ABSTRACT Nitazoxanide (NTZ) is an antibiotic with microbiological characteristics similar to those of metronidazole but without an apparent problem of resistance. The aim of this study was the prospective evaluation of NTZ given as a single agent in the treatment of Helicobacter pylori infection. Twenty culture-positive patients with dyspepsia who had previously failed at least one course of H. pylori eradication therapy were enrolled. Subjects received 1 g of NTZ twice daily for 10 days. The safety and tolerability of the drug were assessed by physical examination, monitoring of adverse events, and clinical laboratory evaluation. Urea breath tests (UBTs) were performed 6 weeks posttreatment. H. pylori was isolated from UBT-positive patients by the string test or endoscopy with biopsy, and the MICs for these isolates were compared to those for isolates obtained pretherapy. The levels of tizoxanide, the active deacylated derivative of NTZ, were measured in blood, saliva, and tissue from two patients during treatment. The UBT results were positive for all 20 patients after completion of NTZ therapy. The MIC results demonstrated that the NTZ susceptibilities of none of the strains isolated from the patients posttherapy had changed significantly. No major adverse reactions were observed, but frequent minor side effects were observed. In conclusion, NTZ did not eradicate H. pylori when it was given as a single agent.


Sign in / Sign up

Export Citation Format

Share Document