scholarly journals Isolation of Bifidobacterium from Infant’s Feces and Its Antimicrobial Activity

2020 ◽  
Vol 2 ◽  
pp. 00002
Author(s):  
Dyah Fitri Kusharyati ◽  
Pancrasia Maria Hendrati ◽  
Dini Ryandini ◽  
Tsani Abu Manshur ◽  
Meilany Ariati Dewi ◽  
...  

<p class="Abstract"><i>Bifidobacterium</i> is a group of Lactic Acid Bacteria (LAB) that commonly found in the gastrointestinal tract and vagina. LAB has many health benefits, such as produce an antimicrobial substance against a pathogen. This research aims to isolate <i>Bifidobacterium</i> from an infant’s feces and know its antimicrobial activity against <i>Escherichia coli</i> and <i>Candida albicans.</i> A total of 5 isolates <i>Bifidobacterium</i> spp. were isolated from the sample. <span lang="EN">The largest inhibitory activity against <i>E. coli</i> was shown by isolate Bb3F, with the inhibitory zone of 10.80 mm. While the largest inhibition activity against <i>C. albicans</i> was shown by isolate Bb1B and Bb3F with the inhibitory zone of 9.70 mm.</span><o:p></o:p></p>

2020 ◽  
Vol 21 (6) ◽  
Author(s):  
DYAH FITRI KUSHARYATI ◽  
HENDRO PRAMONO ◽  
DINI RYANDINI ◽  
TSANI ABU MANSHUR ◽  
MEILANY ARIATI DEWI ◽  
...  

Abstract. Kusharyati DF, Pramono H, Ryandini D, Manshur TA, Dewi MA, Khatimah K, Rovik A. 2020. Bifidobacterium from infant stool: the diversity and potential screening. Biodiversitas 21: 2506-2513. Bifidobacteria spp. are a group of Lactic Acid Bacteria commonly found in the gastrointestinal tract of adults and infants. LAB are known as probiotics and have many health benefits. This research aimed to isolate Bifidobacteria from infant stool, identify, explore their diversity, and screen their potential as probiotics. Stool samples were collected from 3 healthy infants in Banyumas Regency. The potential screening included lysozyme resistance, antimicrobial activity, and exopolysaccharide production. A total of 7 Bifidobacterium species were isolated from infant stool: B. catenulatum, B. minimum, B. indicum, B. dentium, B. asteroides, B. galicum, and B. coerinum. B. indicum isolates (Bb3F and Bb1B) had the greatest inhibition activity against Escherichia coli and Candida albicans with 10.80 and 9.70 mm, respectively. Bifidobacteria isolates were resistant to lysozyme from egg whites up to 200 µg.mL-1. B. catenulatum Bb1A isolate had the highest yield of exopolysaccharide production with 74 mg.L-1. Among them, three Bifidobacterium strains (Bb1B, Bb2A, and Bb2E) were considered potentially as probiotics.


Author(s):  
ROSALINA YULIANA AYEN ◽  
ENDANG KUSDIYANTINI ◽  
SRI PUJIYANTO

Objective: This research aimed to isolate, determine the characteristics of lactic acid bacteria (LAB) of Sui Wu’u from Bajawa, Nusa Tenggara Timur and identify LAB using 16S rRNA potential as antimicrobial activity against pathogenic bacteria. Methods: Sui Wu’u which has been stored for 6 months was obtained from Bajawa district, inoculated on de Man Rogosa-Sharpe Agar (Merck) + 0.5% CaCO3, purification of LAB, characterization of selected isolates, biochemical test, tolerance test for pH, viability to test temperature, and content NaCl, determination of antimicrobial action by the agar well disk diffusion method using antibiotic (Amoxicillin) as a control and as indicator bacteria (Staphylococcus aureus and Escherichia coli) and isolation of genomic 16S rRNA; molecular identification. Results: Based on research results obtained five isolates of LAB, Gram staining the LAB isolated from Sui Wu’u showed that the isolated bacteria (bacilli and coccus) are Gram-positive, catalase-negative and the isolates have tolerance of viability at temperatures of 10°C, 45°C, and 50°C and to salinitas of 4% and 6.5%. The inhibitory zone LAB isolates (2PKT) against E. coli bacteria (20 mm) and S. aureus (12 mm), and (2PKB) against E. coli bacteria (17 mm) and S. aureus (10 mm). The two selected isolates were identified as Lactobacillus fermentum strain HB bacteria with 100% identification value and 98.93% query cover and L. fermentum strain HT with 100% identification value and 99.23% query cover. Conclusion: L. fermentum from Sui Wu’u has antibacterial activity against Staphylococcus aureus and Escherichia coli.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 271
Author(s):  
Jelena Stupar ◽  
Ingunn Grimsbo Holøymoen ◽  
Sunniva Hoel ◽  
Jørgen Lerfall ◽  
Turid Rustad ◽  
...  

Biopreservation is a food preservation technology using microorganisms and/or their inherent antimicrobial metabolites to inhibit undesirable microorganisms. The aim of the present study was to explore the diversity and antimicrobial activity of lactic acid bacteria (LAB) strains (n = 99) isolated from ready-to-eat (RTE) seafood (cold-smoked salmon (CSS), gravlax, and sushi) towards two strains of Listeria monocytogenes (CCUG 15527, F11), Listeria innocua (CCUG 15531) and Escherichia coli (CCUG 38079). The LAB strains were assigned to five different genera (Carnobacterium spp., Lactobacillus spp., Leuconostoc spp., Weissella spp., and Enterococcus sp.) by sequencing a 1150 bp stretch of the 16S rRNA gene. A significant association between the seafood source and the distribution of LAB genera was found (p < 0.001), of which Leuconostoc spp. were most prevalent in sushi and Carnobacterium sp. and Lactobacillus sp. were most frequently isolated from CSS and gravlax. Antimicrobial activity among the LAB was significantly affected by LAB genera (F= 117.91, p < 0.001, one-way ANOVA), product of origin (F = 3.47, p < 0.05), and target (F = 4.64, p = 0.003). LAB isolated from sushi demonstrated a significantly higher antimicrobial effect than LAB from CSS and gravlax (p < 0.05). In general, a significantly higher antimicrobial activity was found towards Listeria spp. than E. coli (p < 0.05). However, Leuconostoc spp. demonstrated similar antimicrobial effects towards E. coli and Listeria spp., except for L. monocytogenes F11 being more sensitive (p < 0.05). This study suggested that seafood-derived LAB strains could be selected for technological application in RTE seafood systems.


2021 ◽  
Vol 31 (4) ◽  
pp. 2
Author(s):  
IDSAP Peramiarti

Diarrhea is defecation with a frequency more often than usual (three times or more) a day (10 mL/kg/day) with a soft or liquid consistency, even in the form of water alone. Pathogenic bacteria, such as Escherichia coli, Salmonella typhimurium, and Shigella sp., play a role in many cases, to which antibiotics are prescribed as the first-line therapy. However, since antibiotic resistance cases are often found, preventive therapies are needed, such as consuming yogurt, which is produced through a fermentation process by lactic acid bacteria (LAB). This research aimed to determine the activity of lactic acid bacteria (Liactobacillus bulgaricus and Streptococcus thermophilus) in yogurt in inhibiting the growth of the pathogenic bacteria E. coli, S. typhimurium, and Shigella sp. The research applied in vitro with the liquid dilution test method and the true experimental design research method with post-test-only and control group design. The design was used to see the inhibitory effect of yogurt LAB on the growth of E. coli, S. typhimurium, and Shigell sp. to compare the effect of several different yogurt concentrations, namely 20%, 40%, 60%, and 80%. The results of the Least Significance Different analysis showed that there was a significant difference between yogurt with a concentration of 0% and that with various concentrations in inhibiting the growth of E. coli, S. typhimurium, and Shigella sp. with a p-value of &lt;0.05. Whereas, there was no significant difference in the various concentrations of yogurt in inhibiting the growth of the three kinds of bacteria with a p-value of &gt; 0.05.<p class="Default" align="center"> </p>


2020 ◽  
Vol 12 (4) ◽  
pp. 357-365
Author(s):  
H.I. Atta ◽  
A. Gimba ◽  
T. Bamgbose

Abstract. The production of bacteriocins by lactic acid bacteria affords them the ability to inhibit the growth of bacteria; they are particularly important in the biocontrol of human and plant pathogens. Lactic acid bacteria have been frequently isolated from fermented foods due to the high acidity these foods contain. In this study, lactic acid bacteria were isolated from garri, a popular Nigerian staple food, which is fermented from cassava, and their antagonistic activity against clinical and environmental isolates of Escherichia coli was determined. The species of Lactobacillus isolated include: Lactobacillus plantarum (50%), Lactobacillus fermentum (20%), Lactobacillus acidophilus (20%), and Lactobacillus salivarius (10%). Growth inhibition of the strains of E.coli was observed in Lactobacillus plantarum that inhibited the growth of both. The clinical and environmental isolates of E. coli were inhibited by Lactobacillus plantarum, while Lactobacillus acidophilus showed activity against only the clinical isolate. The greatest zone of inhibition against the strains of E. coli was recorded by Lactobacillus acidophilus (22.7±1.53 mm). The bacteriocins produced by Lactobacillus species have a good potential in the biocontrol of pathogens, and should be the focus of further studies on antibiotic resistant bacteria.


2020 ◽  
Vol 151 ◽  
pp. 15550-15558
Author(s):  
Amégninou Agban ◽  
Yao Hoekou ◽  
Passimna Pissang ◽  
Tchadjobo Tchacondo ◽  
Komlan Batawila

Objectif : L’objectif de ce travail était d’évaluer in vitro l’activité antimicrobienne des extraits de feuilles et tige de Jatropha multifida sur la croissance de Candida albicans, Escherichia coli et Staphylococcus aureus, puis d’évaluer in vivo la toxicité de cette plante. Méthodologie et résultats : Les méthodes de diffusion en milieu gélosé et de microdilution en milieu liquide ont été utilisées pour évaluer l’effet antimicrobien. Une étude en subaigüe était réalisée afin d’explorer les effets toxiques de l’extrait aqueux des feuilles. Les résultats des tests antimicrobiens montrent une activité des extraits de feuilles et tige de J. multifida sur la croissance des souches utilisées avec des diamètres de zones d’inhibition allant de 8 à 25 mm et des concentrations minimales inhibitrices (CMI) variant de 0,039 mg/mL à 1,25 mg/mL à l’exception des souches de E. coli qui sont résistantes aux extraits de la tige. L’administration en subaigüe de l’extrait aqueux des feuilles de J. multifida à la dose de 600 mg/kg entraîne une perte significative de poids chez les souris. Conclusion et applications des résultats : Les extraits aqueux, éthanolique et hydroéthanolique des feuilles et tige de J. multifida possèdent d’activité antimicrobienne et pourraient être utilisés dans le traitement des Candidoses à C. albicans et des infections à S. aureus. Mais l’essai de toxicité subaigüe montre que l’extrait aqueux de la plante serait toxique. Des études toxicologiques approfondies restent donc nécessaires sur ces extraits afin de mieux élucider leur inocuité. Mots-clés : Jatropha multifida, extraits de feuilles et de tige, activités antifongique et antibactérienne, toxicité. Agban et al., J. Appl. Biosci. 2020 Evaluation du potentiel antimicrobien et de la toxicité des extraits de Jatropha multifida Linn, (Euphorbiaceae) 15551 Evaluation of antimicrobial potential and toxicity of Jatropha multifida Linn, (Euphorbiaceae) extracts ABSTRACT Objective: The objective of this study was to evaluate in vitro the antimicrobial activity of leaves and stem of Jatropha multifida extracts against Candida albicans, Escherichia coli and Staphylococcus aureus, and then to evaluate in vivo the toxicity of this plant. Methodology and Results: The agar well-diffusion and the NCCLS broth microdilution methods were used to assess the antimicrobial effect. A subacute study was carried out to explore the toxic effects of the aqueous extract of the leaves. The results of the antimicrobial tests show an activity of the extracts of leaves and stems of J. multifida on the growth of the strains used with diameters of inhibitory zones ranging from 8 to 25 mm and minimum inhibitory concentrations (MIC) varying from 0.039 mg/mL to 1.25 mg/mL exception E. coli strains which are resistant to extracts from the stem. Subacute administration of the aqueous extract of the leaves of J. multifida at a dose of 600 mg/kg leads to a significant loss of weight in the mice. Conclusion and application of findings : The aqueous, ethanolic and hydroethanolic extracts of the leaves and stem of J. multifida have antimicrobial activity and could be used in the treatment of Candidiasis and bacterial infections due respectively to C. albicans and S. aureus. But the subacute toxicity test shows that the aqueous extract of the plant would be toxic. Extensive toxicological studies therefore remain necessary on these extracts in order to better elucidate their safety. Keywords: Jatropha multifida extracts of leaves and stem, antifungal and antibacterial activities, toxicity


2018 ◽  
Vol 7 (4) ◽  
pp. 1 ◽  
Author(s):  
Xianqin Yang ◽  
Julia Devos ◽  
Hui Wang ◽  
Mark Klassen

The second national baseline microbiological survey of beef steaks offered for retail in Canada was conducted in 2015. A total of 621 steaks of four types (cross rib, CR; inside round, IR; striploin, SL; top sirloin, TS) collected from 135 retail stores in five cities across Canada were tested. Swab samples each from swabbing the entire upper surface of each steak were processed for enumeration of seven groups of indicator organisms: total aerobes (AER), psychrotrophs (PSY), lactic acid bacteria (LAB), pseudomonads (PSE), Brochothrix thermosphacta (BRO), coliforms (COL) and Escherichia coli (ECO). The overall mean values (log CFU/100 cm2) were 5.17±1.29, 4.92±1.36, 4.79±1.42, 3.26±1.49, 2.34±1.88, and 0.80±1.05 for AER, PSY, LAB, PSE, BRO, and COL, respectively. ECO were not recovered from 87.3% of the steaks and when there was recovery, the numbers were mostly ≤ 1 log CFU/100 cm2. Strong correlation was found between the log numbers of AER and PSY, of AER and LAB, and of PSY and LAB, while the correlation between the log numbers of COL and ECO was weak. The numbers of COL and ECO from different groups of steak types or from different cities were not substantially different. Of the four types of steaks, IR had the lowest median values for AER, PSY, LAB, PSE and BRO, followed by CR. The microbiological condition of retail beef steaks in this survey was on par with that in the previous one, with very low numbers of generic E. coli being recovered from very few steaks and the indicators for microbial quality being at numbers much lower than the upper limit for shelf life of beef.


2001 ◽  
Vol 64 (8) ◽  
pp. 1145-1150 ◽  
Author(s):  
NAVEEN CHIKTHIMMAH ◽  
RAMASWAMY C. ANANTHESWARAN ◽  
ROBERT F. ROBERTS ◽  
EDWARD W. MILLS ◽  
STEPHEN J. KNABEL

Due to undesirable quality changes, Lebanon bologna is often processed at temperatures that do not exceed 48.8°C (120°F). Therefore, it is important to study parameters that influence the destruction of Escherichia coli O157:H7 in Lebanon bologna. The objective of the present study was to determine the influence of curing salts (NaCl and NaNO2) on the destruction of E. coli O157:H7 during Lebanon bologna processing. Fermentation to pH 4.7 at 37.7°C reduced populations of E. coli O157:H7 by approximately 0.3 log10, either in the presence or absence of curing salts. Subsequent destruction of E. coli O157:H7 during heating of fermented product to 46.1°C was significantly reduced by the presence of 3.5% NaCl and 156 ppm NaNO2, compared to product without curing salts (P &lt; 0.01). The presence of a higher level of NaCl (5%) in Lebanon bologna inhibited the growth of lactic acid bacteria (LAB), which yielded product with higher pH (~5.0) and significantly reduced the destruction of E. coli O157:H7 even further (P &lt; 0.05). Lower concentrations of NaCl (0, 2.5%) yielded Lebanon bologna with higher LAB counts and lower pHs, compared to product with 5% NaCl. When lactic acid was used to adjust pH in product containing different levels of NaCl, it was determined that low pH was directly influencing destruction of E. coli O157:H7, not NaCl concentration.


2001 ◽  
Vol 56 (1-2) ◽  
pp. 82-88 ◽  
Author(s):  
Ahmed G. Hegazi ◽  
Faten K. Abd El Hady

Abstract The antimicrobial activity of four propolis samples collected from Upper Egypt against Staphylococcus aureus; Escherichia coli and Candida albicans was evaluated. There was a variation in the antimicrobial activity according to the propolis origin. Banisweif propolis showed the highest antimicrobial activity against Staphylococcus aureus, Escherichia coli and Candida albicans, but Fayoum propolis had moderate activity against all tested pathogens. Propolis collected from Assiut and Souhag gave lower antimicrobial activity. Propolis samples were investigated by GC/MS, 71 compounds were identified, 14 being new for propolis. Banisweif propolis is characterized by the presence of 7 caffeate esters and 4 triterpenoids. Fayoum propolis showed the highest amount of lactic acid and the presence of 3 chalcones. But Assiut propolis is characterized by the presence of 4 prenylated coumar-ates. Souhag propolis is characterized by the presence of 5 aliphatic dicarboxylic acids and some other new compounds to propolis.


2003 ◽  
Vol 66 (3) ◽  
pp. 355-363 ◽  
Author(s):  
M. M. BRASHEARS ◽  
D. JARONI ◽  
J. TRIMBLE

Lactic acid bacteria (LAB) were selected on the basis of characteristics indicating that they would be good candidates for a competitive exclusion product (CEP) that would inhibit Escherichia coli O157:H7 in the intestinal tract of live cattle. Fecal samples from cattle that were culture negative for E. coli O157:H7 were collected. LAB were isolated from cattle feces by repeated plating on deMan Rogosa Sharpe agar and lactobacillus selection agar. Six hundred eighty-six pure colonies were isolated, and an agar spot test was used to test each isolate for its inhibition of a four-strain mixture of E. coli O157:H7. Three hundred fifty-five isolates (52%) showed significant inhibition. Seventy-five isolates showing maximum inhibition were screened for acid and bile tolerance. Most isolates were tolerant of acid at pH levels of 2, 4, 5, and 7 and at bile levels of 0.05, 0.15, and 0.3% (oxgall) and were subsequently identified with the API system. Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus delbreukii, Lactobacillus salivarius, Lactobacillus brevis, Lactobacillus cellobiosus, Leuconostoc spp., and Pediococcus acidilactici were the most commonly identified LAB. Nineteen strains were further tested for antibiotic resistance and inhibition of E. coli O157:H7 in manure and rumen fluid. Four of these 19 strains showed susceptibility to all of the antibiotics, 13 significantly reduced E. coli counts in manure, and 15 significantly reduced E. coli counts in rumen fluid (P &lt; 0.05) during at least one of the sampling periods. One of the strains, M35, was selected as the best candidate for a CEP. A 16S rRNA sequence analysis of M35 revealed its close homology to Lactobacillus crispatus. The CEP developed will be used in cattle-feeding trials.


Sign in / Sign up

Export Citation Format

Share Document