scholarly journals IoT System Integrating Unmanned Aerial Vehicles and LoRa Technology: A Performance Evaluation Study

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
J.-M. Martinez-Caro ◽  
M.-D. Cano

Nowadays, the popularity of the unmanned aerial vehicles (UAVs) is high, and it is expected that, in the next years, the implementation of UAVs in day-to-day service will be even greater. These new implementations make use of novel technologies encompassed under the term Internet of Things (IoT). One example of these technologies is Long-Range (LoRa), classified as a Low-Power Wide-Area Network (LPWAN) with low-cost, low-power consumption, large coverage area, and the possibility of a high number of connected devices. One fundamental part of a proper UAV-based IoT service deployment is performance evaluation. However, there is no standardized methodology for assessing the performance in these scenarios. This article presents a case study of an integrated UAV-LoRa system employed for air-quality monitoring. Each UAV is equipped with a set of sensors to measure several indicators of air pollution. In addition, each UAV also incorporates an embedded LoRa node for communication purposes. Given that mobility is key when evaluating the performance of these types of systems, we study eight different mobility models, focusing on the effect that the number of UAVs and their flying speed have on system performance. Through extensive simulations, performance is evaluated via multiple quality dimensions, encompassing the whole process from data acquisition to user experience. Results show that our performance evaluation methodology allows a complete understanding of the operation, and for this specific case study, the mobility model with the best performance is Pathway because the LoRa nodes are distributed and move orderly throughout the coverage area.

Author(s):  
Saqib Majeed ◽  
Adnan Sohail ◽  
Kashif Naseer Qureshi ◽  
Arvind Kumar ◽  
Saleem Iqbal ◽  
...  

AbstractCellular networks based on new generation standards are the major enabler for Internet of things (IoT) communication. Narrowband-IoT and Long Term Evolution for Machines are the newest wide area network-based cellular technologies for IoT applications. The deployment of unmanned aerial vehicles (UAVs) has gained the popularity in cellular networks by using temporary ubiquitous coverage in the areas where the infrastructure-based networks are either not available or have vanished due to some disasters. The major challenge in such networks is the efficient UAVs deployment that covers maximum users and area with the minimum number of UAVs. The performance and sustainability of UAVs is largely dependent upon the available residual energy especially in mission planning. Although energy harvesting techniques and efficient storage units are available, but these have their own constraints and the limited onboard energy still severely hinders the practical realization of UAVs. This paper employs neglected parameters of UAVs energy consumption in order to get actual status of available energy and proposed a solution that more accurately estimates the UAVs operational airtime. The proposed model is evaluated in test bed and simulation environment where the results show the consideration of such explicit usage parameters achieves significant improvement in airtime estimation.


Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 909 ◽  
Author(s):  
Zheng Zhang ◽  
Shouqi Cao ◽  
Yuntengyao Wang

Wireless communications for applications of inshore fishery and large area aquatic environmental monitoring are really challenging, due to the characteristics of a long monitoring period, large coverage area, and adverse transmission conditions. Recently, LPWAN (low-power wide-area network) became the new solution to address these challenges, due to its long transmission distance and low power consumption of end-nodes. In this paper, we designed a novel network system for aquatic environmental monitoring, based on long-range 2.4G technology, which consisted of a low cost dual-channel gateway and end-nodes. A DMSF (dual-channel multiple spreading factors)–TDMA (time division multiple access) MAC (medium access control) scheme for this system was proposed, which largely reduces the channel collision probability, and improves the real-time for urgent data and the average lifetime of end-nodes. We verified the applicability of the long-range 2.4G technology in an aquatic environment, by point-to-point communication experiments over lake water. The performance evaluation and analysis of DMSF–TDMA is presented through simulations, and comparison with other existing schemes. The results demonstrated the benefit of our proposed scheme, in terms of the packet delivery rate, delay, and energy consumption.


Author(s):  
Taghi Shahgholi ◽  
Amir Sheikhahmadi ◽  
Keyhan Khamforoosh ◽  
Sadoon Azizi

AbstractIncreased number of the vehicles on the streets around the world has led to several problems including traffic congestion, emissions, and huge fuel consumption in many regions. With advances in wireless and traffic technologies, the Intelligent Transportation System (ITS) has been introduced as a viable solution for solving these problems by implementing more efficient use of the current infrastructures. In this paper, the possibility of using cellular-based Low-Power Wide-Area Network (LPWAN) communications, LTE-M and NB-IoT, for ITS applications has been investigated. LTE-M and NB-IoT are designed to provide long range, low power and low cost communication infrastructures and can be a promising option which has the potential to be employed immediately in real systems. In this paper, we have proposed an architecture to employ the LPWAN as a backhaul infrastructure for ITS and to understand the feasibility of the proposed model, two applications with low and high delay requirements have been examined: road traffic monitoring and emergency vehicle management. Then, the performance of using LTE-M and NB-IoT for providing backhaul communication infrastructure has been evaluated in a realistic simulation environment and compared for these two scenarios in terms of end-to-end latency per user. Simulation of Urban MObility has been used for realistic traffic generation and a Python-based program has been developed for evaluation of the communication system. The simulation results demonstrate the feasibility of using LPWAN for ITS backhaul infrastructure mostly in favor of the LTE-M over NB-IoT.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 17
Author(s):  
Nur-A-Alam ◽  
Mominul Ahsan ◽  
Md. Abdul Based ◽  
Julfikar Haider ◽  
Eduardo M. G. Rodrigues

In the era of Industry 4.0, remote monitoring and controlling appliance/equipment at home, institute, or industry from a long distance with low power consumption remains challenging. At present, some smart phones are being actively used to control appliances at home or institute using Internet of Things (IoT) systems. This paper presents a novel smart automation system using long range (LoRa) technology. The proposed LoRa based system consists of wireless communication system and different types of sensors, operated by a smart phone application and powered by a low-power battery, with an operating range of 3–12 km distance. The system established a connection between an android phone and a microprocessor (ESP32) through Wi-Fi at the sender end. The ESP32 module was connected to a LoRa module. At the receiver end, an ESP32 module and LoRa module without Wi-Fi was employed. Wide Area Network (WAN) communication protocol was used on the LoRa module to provide switching functionality of the targeted area. The performance of the system was evaluated by three real-life case studies through measuring environmental temperature and humidity, detecting fire, and controlling the switching functionality of appliances. Obtaining correct environmental data, fire detection with 90% accuracy, and switching functionality with 92.33% accuracy at a distance up to 12 km demonstrated the high performance of the system. The proposed smart system with modular design proved to be highly effective in controlling and monitoring home appliances from a longer distance with relatively lower power consumption.


Author(s):  
Mostafa Namian ◽  
Mohammad Khalid ◽  
George Wang ◽  
Yelda Turkan

Unmanned aerial vehicles (UAVs) have gained their prevalent recognition in construction because of their exceptional advantages. Despite the increasing use of UAVs in the industry and their remarkable benefits, there are serious potential safety risks associated that have been overlooked. Construction is one of the most hazardous industries in the United States. In addition to the ordinary hazards normally present in dynamic construction workplaces, UAVs can expose workers to a wider range of never-before-seen safety risks that must be recognized and controlled. The industry is not equipped with safety measures to prevent potential accidents, because of scarce research on drone-associated hazards and risks. The aim of this research was to (1) identify the UAV-associated hazards in construction that may expose personnel and property to potential harms, and (2) study the relative impact of each hazard and the associated safety risks. In Phase I, the researchers conducted an extensive literature review and consulted with a construction UAV expert. In Phase II, the researchers obtained data from 54 construction experts validating and evaluating the identified hazards and risks. The results revealed that adopting UAVs can expose construction projects to a variety of hazards that the industry is not familiar with. “Collision with properties,”“collision with humans,” and “distraction” were identified as the top three safety risks. Moreover, the study introduces effective strategies, such as having qualified crew members, proper drone model selection, and drone maintenance, to mitigate the safety risks. Finally, a post-hoc case study was investigated and presented in this article.


2020 ◽  
Vol 10 (2) ◽  
pp. 15 ◽  
Author(s):  
Mattia Ragnoli ◽  
Gianluca Barile ◽  
Alfiero Leoni ◽  
Giuseppe Ferri ◽  
Vincenzo Stornelli

The development of Internet of Things (IoT) systems is a rapidly evolving scenario, thanks also to newly available low-power wide area network (LPWAN) technologies that are utilized for environmental monitoring purposes and to prevent potentially dangerous situations with smaller and less expensive physical structures. This paper presents the design, implementation and test results of a flood-monitoring system based on LoRa technology, tested in a real-world scenario. The entire system is designed in a modular perspective, in order to have the capability to interface different types of sensors without the need for making significant hardware changes to the proposed node architecture. The information is stored through a device equipped with sensors and a microcontroller, connected to a LoRa wireless module for sending data, which are then processed and stored through a web structure where the alarm function is implemented in case of flooding.


2019 ◽  
Vol 11 (3) ◽  
pp. 57 ◽  
Author(s):  
Lorenzo Vangelista ◽  
Marco Centenaro

The low-power wide-area network (LPWAN) paradigm is gradually gaining market acceptance. In particular, three prominent LPWAN technologies are emerging at the moment: LoRaWAN™ and SigFox™, which operate on unlicensed frequency bands, and NB-IoT, operating on licensed frequency bands. This paper deals with LoRaWAN™, and has the aim of describing a particularly interesting feature provided by the latest LoRaWAN™ specification—often neglected in the literature—i.e., the roaming capability between different operators of LoRaWAN™ networks, across the same country or even different countries. Recalling that LoRaWAN™ devices do not have a subscriber identification module (SIM) like cellular network terminals, at a first glance the implementation of roaming in LoRaWAN™ networks could seem intricate. The contribution of this paper consists in explaining the principles behind the implementation of a global LoRaWAN network, with particular focus on how to cope with the lack of the SIM in the architecture and how to realize roaming.


Author(s):  
Paulo Renato Câmera da Silva ◽  
Herman Augusto Lepikson ◽  
Marcus Vinícius Ivo da Silva ◽  
Rafael Barbosa Mendes

Sign in / Sign up

Export Citation Format

Share Document