scholarly journals Effect of Agave Fructans and Maltodextrin on Zn2+ Chlorophyll Microencapsulation by Spray Drying

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Cesar Femat-Castañeda ◽  
Alejandra Chávez-Rodríguez ◽  
Arturo Moises Chávez-Rodríguez ◽  
Hector Flores-Martínez ◽  
Vania Sbeyde Farías-Cervantes ◽  
...  

Spray-drying technology is a suitable process for large-scale production of various advanced materials. This study describes the effect of the concentration (0.5, 1.0, and 1.5%) of novel carrier agents, agave fructans (FOS) and maltodextrin (MD), in a chlorophyll extract spray-drying process on colour, antioxidant activity, and stability. A pilot plant was employed with a spray-dryer feed flow rate of 13% and an atomisation level of 28000 rpm. The air inlet and outlet temperatures were 180 and 80°C, respectively. A MD concentration of 0.5% was enough to obtain a chemically and physiochemically stable encapsulated chlorophyll powder. High inlet air temperatures reduced the chlorophyll content from 18 to 6 mg/g; high concentrations of the carrier agent also decreased the chlorophyll content. The results showed that, under conditions of low inlet temperature and concentration, both wall materials were efficient in microencapsulating chlorophyll for potential use in the food industry.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Luiz C. Corrêa-Filho ◽  
Maria M. Lourenço ◽  
Margarida Moldão-Martins ◽  
Vítor D. Alves

Carotenoids are a class of natural pigments found mainly in fruits and vegetables. Among them,β-carotene is regarded the most potent precursor of vitamin A. However, it is susceptible to oxidation upon exposure to oxygen, light, and heat, which can result in loss of colour, antioxidant activity, and vitamin activity. Thus, the objective of this work was to study the microencapsulation process ofβ-carotene by spray drying, using arabic gum as wall material, to protect it against adverse environmental conditions. This was carried out using the response surface methodology coupled to a central composite rotatable design, evaluating simultaneously the effect of drying air inlet temperature (110-200°C) and the wall material concentration (5-35%) on the drying yield, encapsulation efficiency, loading capacity, and antioxidant activity. In addition, morphology and particles size distribution were evaluated. Scanning electron microscopy images have shown that the particles were microcapsules with a smooth surface when produced at the higher drying temperatures tested, most of them having a diameter lower than 10μm. The conditions that enabled obtaining simultaneously arabic gum microparticles with higherβ-carotene content, higher encapsulation efficiency, and higher drying yield were a wall material concentration of 11.9% and a drying inlet temperature of 173°C. The systematic approach used for the study ofβ-carotene microencapsulation process by spray drying using arabic gum may be easily applied for other core and wall materials.


2020 ◽  
Vol 859 ◽  
pp. 301-306
Author(s):  
Nattakanwadee Khumpirapang ◽  
Supreeya Srituptim ◽  
Worawut Kriangkrai

Garlic exerts its pharmacological activities; antihyperglycemic, antihyperlipidemia, antihypercholesterolemic, and antihypertensive activity. Therefore, the aim of this study was to determine and optimize the influence of the individual and interactive effect of process conditions variables on the yield of garlic extract powders by three factors and three level-Box-Behnken design under response surface methodology. Spray drying processes the transformation of a garlic juice extract into a dried powder, where usually maltodextrin (MD) as a drying agent is used. According to experimental design, the mixing of garlic juice extract (85 – 95 %w/w) and MD (5 – 15 %w/w) were dried at an air inlet temperature 110°C - 150°C and liquid feed flow rate 5 – 35 rpm. The optimum spray-drying process conditions which maximized the yield of garlic extract powder (31%w/w) were found as follows: air inlet temperature of 150°C, the liquid feed flow rate of 16 rpm, and 5 %w/w MD. The experimental values slightly closed to the corresponding predicted values. Hence, the developed model was adequate and possible to use.


RSC Advances ◽  
2014 ◽  
Vol 4 (108) ◽  
pp. 62965-62970 ◽  
Author(s):  
Jung Sang Cho ◽  
Kyeong Youl Jung ◽  
Mun Young Son ◽  
Yun Chan Kang

Dense spherical Y2O3:Eu3+ phosphor particles with a narrow size distribution were successfully prepared by using a two-step spray drying method. This method is easily scalable and can therefore be applied to the mass production of phosphor particles with high photoluminescence.


2014 ◽  
Vol 540 ◽  
pp. 326-330
Author(s):  
Yan Ma ◽  
Shuai Wu ◽  
Chu Yu Guan ◽  
Guo Hui Huang

Response surface methodology (RSM) was employed to optimize the spray drying process for walnut polypeptide, which were hydrolyzed by papain and trypsin. Air inlet temperature, air outlet temperature and feed concentration as well as cross-interaction among these factors exhibited a significant effect on collection rate and DPPH scavenging activity of walnut polypeptide powder. Results showed that the optimal drying parameters were air inlet temperature of 172℃, air outlet temperature of 88℃ and feed concentration of 23 %. The observed collection rate and DPPH scavenging activity of polypeptide powder under the optimal conditions was up to 91.28 % and 76.33 %, respectively, which was consistent with the predicted result.


2013 ◽  
Vol 3 (1) ◽  
pp. 61 ◽  
Author(s):  
Paola Hernández-Carranza ◽  
Aurelio López-Malo ◽  
Maria-Teresa Jiménez-Munguía

<p>Survival and quality efficiency of <em>Lactobacillus casei </em>microencapsulated by spray drying using different vegetable extracts (asparagus, artichoke, orange or grapefruit peel) were evaluated. Aqueous suspensions of the vegetable extracts with or without maltodextrin (adjusting to 25% w/w) were prepared for the microencapsulation of <em>L. casei</em>. The evaluated spray drying conditions were at a fixed air inlet temperature (Tin) of 145 °C and varying the aqueous suspensions flux (Q) of 10 or 15 g/min. Survival of <em>L. casei</em> was evaluated after the spray drying process and after 60 days of storage at 25 °C. The quality efficiency of the microencapsulated <em>L. casei</em> was evaluated by measuring in the product, physicochemical properties (moisture content, a<sub>w</sub>), determining moisture gain and modeling adsorption isotherms, besides analyzing micrographs. Results demonstrated that moisture content of the different spray drying powders was less than 2% wb and less than 0.30 of a<sub>w</sub>. It was evidently that the use of maltodextrin reduced 50% the powders moisture gain (hygroscopicity) therefore reducing stickiness problems during storage. The Scanning Electron Microscopy (SEM) confirmed individual particles formation with a homogeneous coat when using vegetable extracts+maltodextrin and hence better powder quality than without it. The microbial reduction of <em>L. casei</em> after the spray drying process was of one log cycle and significantly different (p &lt; 0.05) with the presence of maltodextrin when using orange or grapefruit peel. A microbial population over 10<sup>7</sup> cfu/g of <em>L. casei</em> microencapsulated was maintained after 60 days of storage which guarantees its use to develop functional food.</p>


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1547
Author(s):  
Francisco Javier Leyva-Jiménez ◽  
Jesús Lozano-Sánchez ◽  
María de la Luz Cádiz-Gurrea ◽  
Álvaro Fernández-Ochoa ◽  
David Arráez-Román ◽  
...  

Lippia citriodora has been demonstrated to have a wide variety of phytochemicals which provide benefits to human health acting as antioxidants or anti-obesogenics. In this study, these phytochemicals were recovered using a microwave-assisted technology and applying optimal conditions and microencapsulated using spray drying. In this study, two different carbohydrates, maltodextrin (MD) and inulin (IN), were compared as carriers in the encapsulation procedure. The spray drying process was optimized by using a response surface methodology (RSM) based on a central composite design 22, where air inlet temperature and the sample:encapsulating agent ratio (S:EA) were selected as independent variables. Both designs were analyzed equally to evaluate differences between each carrying agent on polar compounds’ encapsulation (process yield (Y%), encapsulation efficiency (EE%) and recovery of compounds (R%)) during the spray drying. The EE% and R% of each polar compound was monitored by High Performance Liquid Chromatography coupled to Time-of-Flight mass spectrometer by electrospray interface (HPLC-ESI-TOF-MS). The results showed that the use of IN as a carrier increased the powder recovered and the recovery of polar compounds after the spray dry process, whereas MD achieved a higher encapsulation efficiency.


RSC Advances ◽  
2015 ◽  
Vol 5 (27) ◽  
pp. 21042-21049 ◽  
Author(s):  
Zhigang Ma ◽  
Bing Gao ◽  
Peng Wu ◽  
Jinchun Shi ◽  
Zhiqiang Qiao ◽  
...  

Core–shell HMX@TATB composites with low shell content and compact shell structure were fabricated via a facile and effective spray-drying technique.


Sign in / Sign up

Export Citation Format

Share Document