scholarly journals Moxibustion of Zusanli (ST36) and Shenshu (BL23) Alleviates Cartilage Degradation through RANKL/OPG Signaling in a Rabbit Model of Rheumatoid Arthritis

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Yang Chen ◽  
Haijun Li ◽  
Xiaochao Luo ◽  
Huahui Liu ◽  
Yumei Zhong ◽  
...  

Rheumatoid arthritis (RA) is a systemic and chronic autoimmune inflammatory disease characterized by severe synovial hyperplasia associated with progressive cartilage degradation. Due to the severe pain and disability caused by RA, effective therapeutic strategies that could simultaneously alleviate the inflammatory response and delay the disease progression are urgently needed. As a major alternative therapy in traditional Chinese medicine, moxibustion has been demonstrated that it could reduce the chronic inflammatory responses of a series of musculoskeletal diseases; however, whether moxibustion has protective effects on RA is still unclear. To investigate the effects of moxibustion on RA, moxibustion was applied to Zusanli (ST36) and Shenshu (BL23) acupoints in a RA rabbit model. HE staining of articular cartilage showed that moxibustion alleviated the cartilage degradation and bone destruction. In addition, moxibustion decreased the osteoclast number in RA rabbits. Real-time PCR revealed that moxibustion decreased the expression of RANKL mRNA while increased the expression of OPG mRNA, indicating a restoration of the balance between osteogenesis and osteoclastogenesis. Taken together, our results indicated that moxibustion had promising antiarthritic effects and could be an useful alternative method in RA therapeutics.

2017 ◽  
Vol 23 (5) ◽  
pp. 1002-1012 ◽  
Author(s):  
Zhanhui Su ◽  
Han Sun ◽  
Man Ao ◽  
Chunying Zhao

AbstractHigh-resolution atomic force microscopy (AFM) was used for the in situ evaluation of the anti-inflammatory effects of triptolide on rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) to understand the anti-RA effects of triptolide, based on the morphological and biophysical changes observed in RA-FLS. RA-FLS have been reported to play a primary role in inflammatory bone destruction during the development of RA and thus are regarded as an important target for RA treatment. Triptolide pretreatment significantly inhibited tumor necrosis factor-α-induced expression of the interleukin (IL)-1β, IL-6, and IL-8 genes in MH7A cells. Using AFM, we showed that triptolide-induced morphological damage in MH7A cells by inducing significant ultrastructure changes in the membrane, which were closely related to triptolide-induced apoptosis in MH7A cells. Using force measurements determined with AFM, triptolide was shown to increase the stiffness of MH7A cells. These findings not only revealed the strong anti-inflammatory effects of triptolide on RA-FLS, highlighting triptolide as a potential anti-RA agent, but also revealed the possible use of AFM for studying anti-inflammatory responses in RA-FLS, which we expect to be developed into a potential tool for anti-RA drug studies in RA-FLS.


2020 ◽  
Vol 20 (8) ◽  
pp. 1156-1165 ◽  
Author(s):  
Xuling Luo ◽  
Juncheng Cui ◽  
Xin Long ◽  
Zhiwei Chen

Rheumatoid arthritis (RA) is an autoimmune inflammatory disease comparing the inflammation of synovium. Macrophage-like synoviocytes and fibroblast-like synoviocytes (synoviocytes) are crucial ingredients of synovium. Therein, a lot of research has focused on synoviocytes. Researches demonstrated that TLR1, TLR2, TLR3, TLR4, TLR5, TLR6 TLR7 and TLR9 are expressed in synoviocyte. Additionally, the expression of TLR2, TLR3, TLR4 and TLR5 is increased in RA synoviocyte. In this paper, we review the exact role of TLR2, TLR3, TLR4 and TLR5 participate in regulating the production of inflammatory factors in RA synoviocyte. Furthermore, we discuss the role of vasoactive intestinal peptide (VIP), MicroRNA, Monome of Chinese herb and other cells (Monocyte and T cell) influence the function of synoviocyte by regulating TLRs. The activation of toll-like receptors (TLRs) in synoviocyte leads to the aggravation of arthritis, comparing with angiogenesis and bone destruction. Above all, TLRs are promising targets for managing RA.


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1456 ◽  
Author(s):  
Chiara Gioia ◽  
Bruno Lucchino ◽  
Maria Grazia Tarsitano ◽  
Cristina Iannuccelli ◽  
Manuela Di Franco

Rheumatoid arthritis (RA) is a systemic, autoimmune disease characterized by joint involvement, with progressive cartilage and bone destruction. Genetic and environmental factors determine RA susceptibility. In recent years, an increasing number of studies suggested that diet has a central role in disease risk and progression. Several nutrients, such as polyunsaturated fatty acids, present anti-inflammatory and antioxidant properties, featuring a protective role for RA development, while others such as red meat and salt have a harmful effect. Gut microbiota alteration and body composition modifications are indirect mechanisms of how diet influences RA onset and progression. Possible protective effects of some dietary patterns and supplements, such as the Mediterranean Diet (MD), vitamin D and probiotics, could be a possible future adjunctive therapy to standard RA treatment. Therefore, a healthy lifestyle and nutrition have to be encouraged in patients with RA.


Rheumatology ◽  
2019 ◽  
Vol 58 (10) ◽  
pp. 1715-1721 ◽  
Author(s):  
Naila Qamar ◽  
Ammara Arif ◽  
Attya Bhatti ◽  
Peter John

Abstract RA is a multifactorial autoimmune inflammatory disease characterized by synovitis, bone destruction and joint dysfunction that leads to shortening of lifespan and increased mortality rates. Currently available treatments of RA, by controlling various symptoms, only delay disease progression and have their own side effects. Consequently, there is the need for a novel therapeutic strategy that offers a more sustainable and biocompatible solution. Nanomedicine is a modern branch of nanobiotechnology that provides targeted therapy to inflamed rheumatic joints and thus prevents unwanted off-target side effects. This review highlights various nanotheranostic and nanotherapeutic strategies that are currently being used for the treatment of RA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiyuan Yan ◽  
Bowei Ni ◽  
Gaohong Sheng ◽  
Yingchi Zhang ◽  
Yifan Xiao ◽  
...  

Osteoarthritis (OA) is a common age-related joint disease. Its development has been generally thought to be associated with inflammation and autophagy. Rhoifolin (ROF), a flavanone extracted from Rhus succedanea, has exhibited prominent anti-oxidative and anti-inflammatory properties in several diseases. However the exact role of ROF in OA remains unclear. Here, we investigated the therapeutic effects as well as the underlying mechanism of ROF on rat OA. Our results indicated that ROF could significantly alleviate the IL-1β–induced inflammatory responses, cartilage degradation, and autophagy downregulation in rat chondrocytes. Moreover, administration of autophagy inhibitor 3-methyladenine (3-MA) could reverse the anti-inflammatory and anti-cartilage degradation effects of ROF. Furthermore, P38/JNK and PI3K/AKT/mTOR signal pathways were involved in the protective effects of ROF. In vivo, intra-articular injection of ROF could notably ameliorate the cartilage damage in rat OA model. In conclusion, our work elucidated that ROF ameliorated rat OA via regulating autophagy, indicating the potential role of ROF in OA therapy.


2018 ◽  
Vol 69 (9) ◽  
pp. 2541-2545
Author(s):  
Raluca Barzoi ◽  
Elena Rezus ◽  
Codruta Badescu ◽  
Razan Al Namat ◽  
Manuela Ciocoiu

There is a bidirectional interaction between most immune cells and osteoblasts, osteoclasts and their precursor cells. The receptor activator of nuclear factor-kB ligand (RANKL)/RANK/osteoprotegerin (OPG) system plays an essential role in the formation of osteoblasts, but it also has implications in osteoclast biology and implicitly on the diseases characterized by bone loss. Proinflammatory cytokines existing at synovial level function as direct or indirect stimulators of osteoclast differentiation, but also of its survival or activity, although some cytokines may also play an antiosteocastogenic role. The fate of bone destruction is determined by the balance between osteoclastogenic and antiosteoclastogenic mediators. Our study has shown that the early initiation of the therapy with anti-TNF and anti-IL6 biological agents, in patients with rheumatoid arthritis, inhibits bone destruction, regardless of the anti-inflammatory activity in patients with rheumatoid arthritis.


Sign in / Sign up

Export Citation Format

Share Document