scholarly journals The Sensitivity of Temperature to Tachyhydrite Formation: Evidence from Evaporation Experiments of Simulated Brines Based on Compositions of Fluid Inclusions in Halite

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Huaide Cheng ◽  
Qingyu Hai ◽  
Jun Li ◽  
Jianguo Song ◽  
Xuehai Ma

An average of concentrations of Na+, Mg2+, Ca2+, K+, and Cl– in fluid inclusions, from the Khorat Plateau evaporite primary halite, was employed. The evaporation–crystallization sequence and paths were obtained under various temperature conditions for the quinary system, Na+, K+, Mg2+, Ca2+//Cl–-H2O. The results showed (1) a halite, sylvite, and carnallite stage at 25°C; (2) a halite, sylvite, carnallite, and bischofite stage at 35°C; and (3) a halite, sylvite, carnallite, bischofite, and tachyhydrite stage at 50°C. These results indicated that (1) a hot state is favorable for tachyhydrite formation, (2) tachyhydrite occurs in the late evaporation stage, and (3) the stability field of tachyhydrite increases with increasing temperature. The crystallization paths were plotted by the application of Jänecke phase diagram at 25°C, 35°C, and 50°C involving the system Na+, K+, Mg2+, Ca2+//Cl–-H2O. The crystallization sequence predicted on the Jänecke phase diagram showed a good agreement with the experimental crystallization sequences and paths. Tachyhydrite precipitate more easily from a high Ca concentration solution during the late evaporation stage with increasing temperature under the same relative humidity condition. The evaporite mineral succession in the Khorat Plateau, Sergipe, and Congo basins agrees well with the mineral precipitation sequences predicted from their own fluid inclusions in halite. This is confirmed by the simulation of the Jänecke phase diagram at 50°C involving the system Na+, K+, Mg2+, Ca2+//Cl–-H2O. The precipitation of tachyhydrite was sensitive to the temperature, and that the thermal resource may originate from a temperature profile in the solar pond. This study presented a simulated approach that can help in understanding similar cases that studies the sensitivity of temperature to salt formation.

Author(s):  
Markus Guido Herrmann ◽  
Ralf Peter Stoffel ◽  
Michael Küpers ◽  
Mohammed Ait Haddouch ◽  
Andreas Eich ◽  
...  

The high-pressure and low-temperature behaviour of the GeSe x Te1−x system (x = 0, 0.2, 0.5, 0.75, 1) was studied using a combination of powder diffraction measurements and first-principles calculations. Compounds in the stability field of the GeTe structure type (x = 0, 0.2, 0.5) follow the high-pressure transition pathway: GeTe-I (R3m) → GeTe-II (f.c.c.) → GeTe-III (Pnma). The newly determined GeTe-III structure is isostructural to β-GeSe, a high-pressure and high-temperature polymorph of GeSe. Pressure-dependent formation enthalpies and stability regimes of the GeSe x Te1−x polymorphs were studied by DFT calculations. Hexagonal Ge4Se3Te is stable up to at least 25 GPa. Significant differences in the high-pressure and low-temperature behaviour of the GeTe-type structures and the hexagonal phase are highlighted. The role of Ge...Ge interactions is elucidated using the crystal orbital Hamilton population method. Finally, a sketch of the high-pressure phase diagram of the system is provided.


2020 ◽  
Vol 29 (7) ◽  
pp. 1073-1099
Author(s):  
Mete ÇETİNKAPLAN

Metamorphic evolution of an epidote–lawsonite blueschist sample characterized by the coexistence of lawsonite and epidote from Sivrihisar area (Tavşanlı Zone) was studied herein in terms of petrology and mineral equilibria. Based on the textural evidence and phase composition, 2 prograde stages, defined by assemblage-I and -II, and 1 retrograde stage were recognized. Assemblage-I indicates epidote-blueschist facies conditions (12 ± 1 kbar / 485 ± 10 °C). Assemblage-II is characterized by the coexistence of epidote and lawsonite (17 ± 1 kbar / 515 ± 10 °C) corresponding to the interface of lawsonite blueschist and epidote blueschist facies. Phase diagram calculations and mineral compositions revealed that along this interface, an equilibrium field with lawsonite and epidote is stable. This closed-equilibrium field is controlled by high aH2O and an elevated Fe3+/Al ratio of minerals. Pressure-temperature (P–T) estimates and textural observations indicated a counter-clockwise path during the subduction and exhumation history. The preservation of lawsonite and epidote during the retrograde stage pointed to the fact that the path followed the stability field of lawsonite and epidote during exhumation.


RSC Advances ◽  
2021 ◽  
Vol 11 (38) ◽  
pp. 23477-23490
Author(s):  
Yonggang Wu ◽  
Jihua Zhang ◽  
Bingwei Long ◽  
Hong Zhang

The ZnWO4 (010) surface termination stability is studied using a density functional theory-based thermodynamic approach. The stability phase diagram shows that O-Zn, DL-W, and DL-Zn terminations of ZnWO4 (010) can be stabilized.


1997 ◽  
Vol 493 ◽  
Author(s):  
S. P. Alpay ◽  
A. S. Prakash ◽  
S. Aggarwal ◽  
R. Ramesh ◽  
A. L. Roytburd ◽  
...  

ABSTRACTA PbTiO3(001) film grown on MgO(001) by pulsed laser deposition is examined as an example to demonstrate the applications of the domain stability map for epitaxial perovskite films which shows regions of stable domains and fractions of domains in a polydomain structure. X-ray diffraction studies indicate that the film has a …c/a/c/a… domain structure in a temperature range of °C to 400°C with the fraction of c-domains decreasing with increasing temperature. These experimental results are in excellent agreement with theoretical predictions based on the stability map.


2009 ◽  
Vol 615-617 ◽  
pp. 311-314 ◽  
Author(s):  
W.S. Loh ◽  
J.P.R. David ◽  
B.K. Ng ◽  
Stanislav I. Soloviev ◽  
Peter M. Sandvik ◽  
...  

Hole initiated multiplication characteristics of 4H-SiC Separate Absorption and Multiplication Avalanche Photodiodes (SAM-APDs) with a n- multiplication layer of 2.7 µm were obtained using 325nm excitation at temperatures ranging from 300 to 450K. The breakdown voltages increased by 200mV/K over the investigated temperature range, which indicates a positive temperature coefficient. Local ionization coefficients, including the extracted temperature dependencies, were derived in the form of the Chynoweth expression and were used to predict the hole multiplication characteristics at different temperatures. Good agreement was obtained between the measured and the modeled multiplication using these ionization coefficients. The impact ionization coefficients decreased with increasing temperature, corresponding to an increase in breakdown voltage. This result agrees well with the multiplication characteristics and can be attributed to phonon scattering enhanced carrier cooling which has suppressed the ionization process at high temperatures. Hence, a much higher electric field is required to achieve the same ionization rates.


2006 ◽  
Vol 17 (01) ◽  
pp. 65-73 ◽  
Author(s):  
SHIRO SAWADA

The optimal velocity model which depends not only on the headway but also on the relative velocity is analyzed in detail. We investigate the effect of considering the relative velocity based on the linear and nonlinear analysis of the model. The linear stability analysis shows that the improvement in the stability of the traffic flow is obtained by taking into account the relative velocity. From the nonlinear analysis, the relative velocity dependence of the propagating kink solution for traffic jam is obtained. The relation between the headway and the velocity and the fundamental diagram are examined by numerical simulation. We find that the results by the linear and nonlinear analysis of the model are in good agreement with the numerical results.


2011 ◽  
Vol 137 ◽  
pp. 72-76
Author(s):  
Wei Zhang ◽  
Xian Wen ◽  
Yan Qun Jiang

A proper orthogonal decomposition (POD) method is applied to study the global stability analysis for flow past a stationary circular cylinder. The flow database at Re=100 is obtained by CFD software, i.e. FLUENT, with which POD bases are constructed by a snapshot method. Based on the POD bases, a low-dimensional model is established for solving the two-dimensional incompressible NS equations. The stability of the flow solution is evaluated by a POD-Chiba method in the way of the eigensystem analysis for the velocity disturbance. The linear stability analysis shows that the first Hopf bifurcation takes place at Re=46.9, which is in good agreement with available results by other high-order accurate stability analysis methods. However, the calculated amount of POD is little, which shows the availability and advantage of the POD method.


1983 ◽  
Vol 20 (9) ◽  
pp. 1389-1408 ◽  
Author(s):  
Philippe Erdmer ◽  
Herwart Helmstaedt

Eclogite occurring in central Yukon, at Faro and near Last Peak, as lenses interleaved with muscovite–quartz blastomylonite has the chemical and field characteristics of group C rocks. From sigmoidal inclusion trails in garnet, from geothermometry and geobarometry, and from mineral parageneses, the eclogite is inferred to have a crustal protolith and to have followed a hysteretic, subduction-cycle P–T trajectory. Transformation of basic igneous rock into schist was followed by eclogite metamorphism during which pressure was at least 1000 MPa and temperature was between 600 and 700 °C. Uplifting involved passage through the stability field of glaucophane; the eclogite and its host rocks were then subjected to greenschist fades metamorphism and deformation, with temperature at approximately 400 °C. The rocks were emplaced as thrust sheets against or onto the western North American cratonal margin. The tectonic boundary ranges from nearly vertical, where it is outlined by a zone of steeply dipping mélange, to nearly horizontal beneath klippen of cataclastic rocks that lie on North American miogeoclinal strata. Together with occurrences of eclogite on strike, in Yukon, near Fairbanks (Alaska), and near Pinchi Lake (British Columbia), eclogite at Faro and near Last Peak implies that the Yukon Cataclastic Complex is a deeply eroded collision mélange that borders over 1000 km of the ancient continental margin.


2008 ◽  
Vol 3 (3) ◽  
pp. 34-38
Author(s):  
Sergey A. Gaponov ◽  
Yuri G. Yermolaev ◽  
Aleksandr D. Kosinov ◽  
Nikolay V. Semionov ◽  
Boris V. Smorodsky

Theoretical and an experimental research results of the disturbances development in a swept wing boundary layer are presented at Mach number М = 2. In experiments development of natural and small amplitude controllable disturbances downstream was studied. Experiments were carried out on a swept wing model with a lenticular profile at a zero attack angle. The swept angle of a leading edge was 40°. Wave parameters of moving disturbances were determined. In frames of the linear theory and an approach of the local self-similar mean flow the stability of a compressible three-dimensional boundary layer is studied. Good agreement of the theory with experimental results for transversal scales of unstable vertices of the secondary flow was obtained. However the calculated amplification rates differ from measured values considerably. This disagreement is explained by the nonlinear processes observed in experiment


Sign in / Sign up

Export Citation Format

Share Document