scholarly journals Extraction and Characterization of Novel Natural Hydroxyapatite Bioceramic by Thermal Decomposition of Waste Ostrich Bone

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Komal Prasad Malla ◽  
Sagar Regmi ◽  
Achyut Nepal ◽  
Sitaram Bhattarai ◽  
Ram Jeewan Yadav ◽  
...  

A novel natural hydroxyapatite (HAp) bioceramic was extracted from the ostrich cortical bone by the thermal decomposition method. HAp was characterized by different analytical tools such as thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). Removal of organic impurities from the bone powder was confirmed by TGA analysis. FTIR spectra of HAp confirmed the presence of the major functional groups such as phosphate (PO43−), hydroxyl (OH−), and carbonate (CO32−) in the bioceramic. The XRD data revealed that the HAp was the crystalline phase obtained by calcination of the bone powder at 950°C, and the SEM analyses confirmed the typical plate-like texture of the nanosized HAp crystals.

2020 ◽  
Vol 849 ◽  
pp. 113-118
Author(s):  
Yayat Iman Supriyatna ◽  
Slamet Sumardi ◽  
Widi Astuti ◽  
Athessia N. Nainggolan ◽  
Ajeng W. Ismail ◽  
...  

The purpose of this study is to characterize Lampung iron sand and to conduct preliminary experiments on the TiO2 synthesis which can be used for the manufacturing of functional food packaging. The iron sand from South Lampung Regency, Lampung Province that will be utilized as raw material. The experiment was initiated by sieving the iron sand on 80, 100, 150, 200 and 325 mesh sieves. Analysis using X-Ray Fluorescence (XRF) to determine the element content and X-Ray Diffraction (XRD) to observe the mineralization of the iron sand was conducted. The experiment was carried out through the stages of leaching, precipitation, and calcination. Roasting was applied firstly by putting the iron sand into the muffle furnace for 5 hours at a temperature of 700°C. Followed by leaching using HCl for 48 hours and heated at 105°C with a stirring speed of 300 rpm. The leaching solution was filtered with filtrate and solid residue as products. The solid residue was then leached using 10% H2O2 solution. The leached filtrate was heated at 105°C for 40 minutes resulting TiO2 precipitates (powder). Further, the powder was calcined and characterized. Characterization of raw material using XRF shows the major elements of Fe, Ti, Mg, Si, Al and Ca. The highest Ti content is found in mesh 200 with 9.6%, while iron content is about 80.7%. While from the XRD analysis, it shows five mineral types namely magnetite (Fe3O4), Rhodonite (Mn, Fe, Mg, Ca) SiO3, Quart (SiO2), Ilmenite (FeOTiO2) and Rutile (TiO2). The preliminary experiment showed that the Ti content in the synthesized TiO2 powder is 21.2%. The purity of TiO2 is low due to the presence of Fe metal which is dissolved during leaching, so that prior to precipitation purification is needed to remove impurities such as iron and other metals.


Author(s):  
M.T. Blatchford ◽  
A.J. Horlock ◽  
D.G. McCartney ◽  
P.H. Shipway ◽  
J.V. Wood

Abstract In this paper, the production of NiCr-TiC powder by SHS, suitable for HVOF spraying, is discussed together with results on the microstructure and coating properties. Compacts for SHS were prepared by mixing elemental Ti and C with pre-alloyed Ni-20wt.% Cr powder to give an overall composition of 35wt.% NiCr and 65wt.% TiC. These were then ignited and a self-sustaining reaction proceeded to completion. Reacted compacts were crushed, sieved, and classified to give feedstock powders in size ranges of 10-45 µm and 45-75 µm. All powder was characterized prior to spraying based on particle size distribution, x-ray diffraction (XRD), and scanning electron microscopy (SEM/EDS). Thermal spraying was performed using both H2 and C3H6 as fuel gases in a UTP/Miller Thermal HVOF system. The resulting coatings were characterized by SEM and XRD analysis, and the microstructures correlated with powder size and spray conditions. Abrasive wear was determined by a modified 'dry sand rubber wheel' (DSRW) test and wear rates were measured. It has been found that wear rates comparable to those of HVOF sprayed WC-17wt% Co coatings can be achieved.


2012 ◽  
Vol 616-618 ◽  
pp. 1732-1735 ◽  
Author(s):  
Xi Hai Shen ◽  
Yu Gang Zheng ◽  
Liang Chang ◽  
Jin Jia Guo ◽  
Song Bin Ye ◽  
...  

Aiming at the glass-to-metal seals serving in the Solar Thermal Power (STP), glass-to-metal vacuum brazed joints were studied. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis were performed to examine the microstructure and element contents of interface seam on the glass-to-metal vacuum brazed joints. Also, the compositional concentration of the interface seam was measured by using energy dispersive spectroscopy (EDS).


2012 ◽  
Vol 581-582 ◽  
pp. 570-573
Author(s):  
Jia Feng Zhang ◽  
Bao Zhang ◽  
Xue Yi Guo ◽  
Jian Long Wang ◽  
He Zhang Chen ◽  
...  

The LiFe0.98Ni0.01Nb0.01PO4/C was synthesized by carbon reduction route using FePO4•2H2O as precursor. The LiFe0.98Ni0.01Nb0.01PO4/C sample was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemical measurements. The XRD analysis, SEM and TEM images show that sample has the good crystal structure, morphology and carbon coating. The charge-discharge tests demonstrate that the powder has the better electrochemical properties, with an initial discharge capacity of 164.6 mAh•g−1 at current density of 0.1 C. The capacity retention reaches 99.8% after 100 cycles at 0.1C.


2013 ◽  
Vol 734-737 ◽  
pp. 916-920 ◽  
Author(s):  
Jing Xia Chao ◽  
Ju Pei Xia ◽  
Chao Qin Yang ◽  
Zhao Shu Zhang ◽  
Xue Jiao Ren

The thermal decomposition process of K-feldspar-CaSO4-CaO system was studied by X-ray diffraction (XRD) analysis of the product which calcined at 1473K. The results show that KAlSi3O8 firstly is decomposed into KAlSi2O6 and released the SiO2, then has a complex reaction between KAlSi2O6 and CaO, which generated intermediates-K2SiO3 under the operating conditions. K2SiO3 is unstable and reacted with calcium sulfate to generate K2SO4. When the CaO amount is insufficient, the main products are KAlSi2O6 and 2CaOAl2O3SiO2, the potassium existed as K2S2O8; when n (CaO) / n (KAS6) 12:1, the products will further transfer into CaOSiO2 and 2CaO SiO2 and the potassium existed as K2SO4.


2007 ◽  
Vol 119 ◽  
pp. 71-74 ◽  
Author(s):  
Yan Li ◽  
Xiao Li Zhang ◽  
Young Hwan Kim ◽  
Young Soo Kang

Co nanoparticles were synthesized via a solventless thermal decomposition of Co2+-oleate2. The crystalline structure is strongly affected by the thermal treatment of the Co nanoparticles. Further, the annealing also results in the decomposition of surfactant around Co particles. The size of nanoparticles was confirmed by transmission electron microscopy (TEM). The crystal structure of nanoparticles was characterized by X-ray diffraction pattern (XRD). The magnetic properties were characterized by vibrating sample magnetometer (VSM).


2010 ◽  
Vol 97-101 ◽  
pp. 1091-1096
Author(s):  
Dong Fang Han ◽  
Qun Tang ◽  
Qing Meng Zhang ◽  
Lei Wang ◽  
Ju Du

The structure and property of Ce-doped Ba0.2Sr0.8TiO3 (BST) were investigated as a function of Ce content. The density experiment results confirmed that increasing the Ce doping ratio caused the decrease in shrinkage factor of BST in the sintering procedure. Additionally, both Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis showed that the grain size of Ce-doped BST was dependent on the Ce content. Further more, the dielectric constant and dielectric loss had a curve relationship with increasing Ce content. The improvement of the electrical properties of Ce doping BST may be related to the decrease in the concentration of oxygen vacancies. According to the research, the diameter of grain, the dielectric constant and loss factor of the 1mol% Ce-doped Ba0.2Sr0.8TiO3 were 500nm, 365.8 and 0.0063, respectively.


2011 ◽  
Vol 391-392 ◽  
pp. 377-380
Author(s):  
Guo Jun Li ◽  
Ming Yang ◽  
Hai Li Jing ◽  
Rui Ming Ren

LiFePO4/C composite powders were prepared by a simple reaction of as-synthesized FePO4•2H2O, LiOH•H2O, oxalic acid and citric acid. The influence of oxalic acid and citric acid in different ratios was investigated on morphology and electrochemical performance of LiFePO4/C composite powders. The characterization of the composites included X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD analysis indicates that the material is well crystallized without impurities. The obtained LiFePO4/C composite powders with well dispersion at CA/OA ratio of 1:1.50 and the initial charge capacity reached 159.3 mAhg-1 at 0.1C rate, meanwhile, the particles prepared at 1:0.75 were close to spherical in shape and the specific capacity value was 149.8 mAhg-1 at 0.1C rate, with a slight decrease on greater C-rates reaching 141.3 mAhg-1 at 1C.


1995 ◽  
Vol 48 (3) ◽  
pp. 557 ◽  
Author(s):  
SJ Crimp ◽  
L Spiccia

Pure solutions of [ Rh (H2O)6]3+, dimer [Rh2(μ-OH)2(H2O)8]4+ and trimer [Rh3(μ-OH)4(H2O)10]5+ have been converted into their respective 'active' hydroxides by dropwise addition to an imidazole solution. These 'active' hydroxides have been analysed by a variety of techniques including rhodium determination, infrared spectroscopy, thermal analysis and powder X-ray diffraction. Purity determinations using ion-exchange chromatography showed that the three hydroxides consist primarily of the neutral forms of the starting aqua ion (>96%) with small amounts of species with higher nuclearity. Rhodium analysis and thermogravimetric measurements confirmed the composition of these hydroxides to be Rh (OH)3(H2O)3.H2O, Rh2(μ-OH)2(OH)4(H2O)4 and Rh3(μ-OH)4(OH)5(H2O)5.5H2O. A scheme for the thermal decomposition of each of the hydroxides has been proposed on the basis of the t.g . and d.t.a . data and the knowledge that the final product in each case is α-Rh2O3. Heating of the hydroxides in air resulted in oxidation of RhIII to RhIV (temperature 250-300°C) forming RhO2 which on further heating decomposed to α-Rh2O3 and dioxygen.


2005 ◽  
Vol 71 (11) ◽  
pp. 7172-7177 ◽  
Author(s):  
John M. Senko ◽  
Thomas A. Dewers ◽  
Lee R. Krumholz

ABSTRACT A nitrate-dependent Fe(II)-oxidizing bacterium was isolated and used to evaluate whether Fe(II) chemical form or oxidation rate had an effect on the mineralogy of biogenic Fe(III) (hydr)oxides resulting from nitrate-dependent Fe(II) oxidation. The isolate (designated FW33AN) had 99% 16S rRNA sequence similarity to Klebsiella oxytoca. FW33AN produced Fe(III) (hydr)oxides by oxidation of soluble Fe(II) [Fe(II)sol] or FeS under nitrate-reducing conditions. Based on X-ray diffraction (XRD) analysis, Fe(III) (hydr)oxide produced by oxidation of FeS was shown to be amorphous, while oxidation of Fe(II)sol yielded goethite. The rate of Fe(II) oxidation was then manipulated by incubating various cell concentrations of FW33AN with Fe(II)sol and nitrate. Characterization of products revealed that as Fe(II) oxidation rates slowed, a stronger goethite signal was observed by XRD and a larger proportion of Fe(III) was in the crystalline fraction. Since the mineralogy of Fe(III) (hydr)oxides may control the extent of subsequent Fe(III) reduction, the variables we identify here may have an effect on the biogeochemical cycling of Fe in anoxic ecosystems.


Sign in / Sign up

Export Citation Format

Share Document