scholarly journals Reinforcement Learning-Based Backstepping Control for Container Cranes

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiao Sun ◽  
Zhihang Xie

A novel backstepping control scheme based on reinforcement fuzzy Q-learning is proposed for the control of container cranes. In this control scheme, the modified backstepping controller can handle the underactuated system of a container crane. Moreover, the gain of the modified backstepping controller is tuned by the reinforcement fuzzy Q-learning mechanism that can automatically search the optimal fuzzy rules to achieve a decrease in the value of the Lyapunov function. The effectiveness of the applied control scheme was verified by a simulation in Matlab, and the performance was also compared with the conventional sliding mode controller aimed at container cranes. The simulation results indicated that the used control scheme could achieve satisfactory performance for step-signal tracking with an uncertain lope length.

2020 ◽  
Vol 42 (9) ◽  
pp. 1675-1689 ◽  
Author(s):  
Yingxun Wang ◽  
Yan Ma ◽  
Zhihao Cai ◽  
Jiang Zhao

In this paper, a new swarm intelligent-based backstepping control scheme is proposed for quadrotor trajectory tracking and obstacle avoidance. First, the sliding mode extended state observer (SMESO) is used to estimate different disturbances, and the tracking differentiator (TD) is integrated to enhance the performance of backstepping control scheme. Then, the chaotic grey wolf optimization (CGWO) is developed with chaotic initialization and chaotic search to optimize the parameters of attitude and position controllers. Further, the virtual target guidance approach is proposed for quadrotor trajectory tracking and obstacle avoidance. Comparative simulations and Monte Carlo tests are carried out to demonstrate the effectiveness and robustness of the CGWO-based backstepping control scheme and virtual target guidance approach.


Author(s):  
Ali Selk Ghafari ◽  
Ali Meghdari

A robust motion controller based on backstepping technique for a robotic nurse unit to assist paraplegic patients is addressed in this paper. A backstepping controller is proposed for tracking a desired trajectory in hospital environment. Simulation results are provided to validate the proposed controller. The results show satisfactory performance of the designed controller in tracking problem.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Chijun Zhou ◽  
Changxin Luo ◽  
Jikun Ye ◽  
Jihong Zhu ◽  
Humin Lei

This paper presents a noncertainty equivalent adaptive backstepping control scheme for advanced fighter attitude tracking, in which unsteady effects, parameter uncertainties, and input constraints are all considered which increase the design difficulty to a large extent. Based on unsteady attitude dynamics and the noncertainty equivalent principle, a new observer is first developed to reconstruct the immeasurable and time-varying unsteady states. Afterwards, the unsteady aerodynamics is compensated in the backstepping controller where the command filter is introduced to impose physical constraints on actuators. In order to further enhance the robustness, the noncertainty equivalent adaptive approach is again used to estimate the uncertain constant parameters. Moreover, stability of the closed-loop system that includes the state observer, parameter estimator, and backstepping controller is proven by the Lyapunov theorem in a unified architecture. Finally, simulation results show that performance of the deterministic control system can be captured when attractive manifolds are achieved. The effectiveness and robustness of the proposed control scheme are verified by the Herbst maneuver.


Author(s):  
Le Anh Tuan ◽  
Quang Ha ◽  
Pham Van Trieu

A container crane mounted on a pontoon is utilized to transfer containers to smaller ships when a large container ship cannot reach the shallow water port. The shipboard container is considered as an underactuated system having complicated kinematic constraints and hysteretic nonlinearities, with only two actuators to conduct simultaneous tasks: tracking the trolley to destination, lifting the container to the desired cable length, and suppressing the axial container oscillations and container swing. Parameter variations, wave-induced motions of the ship, wind disturbance, and nonlinearities remain challenges for control of floating container cranes. To deal with these problems, this study presents the design of two nonlinear robust controllers, taking into account the influence of the output hysteresis, and using velocity feedback from a state observer. Control performance of the proposed controllers is verified in both simulation and experiments. Together with consistently stabilizing outputs, the proposed control approach well rejects hysteresis and disturbance.


Proceedings ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 13
Author(s):  
Shuzhong Zhang ◽  
Su Li ◽  
Fuquan Dai

To provide high output force and to reduce the installation space, the electro-hydrostatic actuator (EHA) usually adopts asymmetric cylinder. However, comprehensive effects produced by its asymmetric flow, parameter uncertainties and unknown disturbance make it difficult to achieve high-accuracy position control. This paper proposed an integral sliding mode backstepping control (ISMBC) based on extended state observer for the asymmetric EHA. Firstly, the principle of the EHA was analyzed and an EHA model was built. Furthermore, the state space equation of the EHA was established based on flow distribution analysis. Two extended state observers (ESO) were designed to achieve real-time estimation of the unmeasured system states, unmatched and matched disturbances. The backstepping method was used to compensate the matched and unmatched disturbance, and an integrated sliding mode controller was developed to eliminate the static error and to improve the response ability. Theoretical analysis indicates that the controller can guarantee the desired tracking performance for the actuator under time-varying unmatched disturbances, and can make the tracking error asymptotically converge to zero under constant matched disturbances. Finally, simulations were performed with the designed controller, backstepping controller and proportional–integral–derivative (PID) controller, respectively. Thereafter, detailed comparisons of the control performances were provided. The results show that the proposed controller can achieve better position tracking and stronger robustness in parameter changing compared with the backstepping controller and PID controller.


2017 ◽  
Vol 20 (K1) ◽  
pp. 35-41
Author(s):  
Nguyen Quoc Chi ◽  
Nguyen Tien Khang

In this paper, a control scheme is proposed for an automated container crane. The proposed control scheme includes position control (for the trolley) and sway control algorithms (for the payload) where PID control is used for position control and PD control is assigned for sway control. The proposed control scheme employs the feedback signal of the sway angle, which is acquired by a vision system. The idea to employ the vision system is to overcome the difficulty in installing a conventional sensor system for measuring the sway angle. Numerical simulations and experiments have been carried out to verify the effectiveness of the proposed control scheme.


2021 ◽  
Vol 9 (5) ◽  
pp. 530
Author(s):  
Hwan-Cheol Park ◽  
Soumayya Chakir ◽  
Young-Bok Kim ◽  
Thinh Huynh

This paper proposes a novel nonlinear control approach for a two-axis gimbal to achieve accurate real-time tracking performance in maritime surveillance applications. For this objective, the control system must overcome system complexities and limitations, including nonlinear dynamics, coupled Euler angle-based measurements, and delay time constraints. The nonlinear backstepping controller was designed, taking into consideration the nonlinearities and system couplings to preserve the system stability. Then, an extra backstep was incorporated to minimize the control errors due to the delay time. The proposed control scheme enhances the tracking performances and expands the system’s bandwidth, which is validated in the simulations and experimental studies in comparison with a super-twisting sliding mode controller introduced in a previous study.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Jiangbin Wang ◽  
Ling Liu ◽  
Chongxin Liu ◽  
Xiaoteng Li

The main purpose of the paper is to control chaotic oscillation in a complex seven-dimensional power system model. Firstly, in view that there are many assumptions in the design process of existing adaptive controllers, an adaptive sliding mode control scheme is proposed for the controlled system based on equivalence principle by combining fixed-time control and adaptive control with sliding mode control. The prominent advantage of the proposed adaptive sliding mode control scheme lies in that its design process breaks through many existing assumption conditions. Then, chaotic oscillation behavior of a seven-dimensional power system is analyzed by using bifurcation and phase diagrams, and the proposed strategy is adopted to control chaotic oscillation in the power system. Finally, the effectiveness and robustness of the designed adaptive sliding mode chaos controllers are verified by simulation.


Sign in / Sign up

Export Citation Format

Share Document