Observer-Based Nonlinear Robust Control of Floating Container Cranes Subject to Output Hysteresis

Author(s):  
Le Anh Tuan ◽  
Quang Ha ◽  
Pham Van Trieu

A container crane mounted on a pontoon is utilized to transfer containers to smaller ships when a large container ship cannot reach the shallow water port. The shipboard container is considered as an underactuated system having complicated kinematic constraints and hysteretic nonlinearities, with only two actuators to conduct simultaneous tasks: tracking the trolley to destination, lifting the container to the desired cable length, and suppressing the axial container oscillations and container swing. Parameter variations, wave-induced motions of the ship, wind disturbance, and nonlinearities remain challenges for control of floating container cranes. To deal with these problems, this study presents the design of two nonlinear robust controllers, taking into account the influence of the output hysteresis, and using velocity feedback from a state observer. Control performance of the proposed controllers is verified in both simulation and experiments. Together with consistently stabilizing outputs, the proposed control approach well rejects hysteresis and disturbance.

Author(s):  
Ziyad N. Masoud ◽  
Nader A. Nayfeh ◽  
Ali H. Nayfeh

Traditionally, container cranes are modeled as a simple pendulum with a lumped mass at the end of a cable. In the case of large container cranes, the actual configuration of the hoisting mechanism is significantly different; it consists typically of a set of four hoisting cables. These cables are hoisted from four different points on the trolley and are attached on the load side to four points on a spreader bar used to lift containers. The dynamics of the actual hoisting assembly of a container crane is different from that of a simple pendulum. A controller design based on the actual model will more likely result in a response superior to those based on simple models. In this work, a nonlinear mathematical model of the actual container crane is developed. A delayed position-feedback controller is designed. Performance of the controller is simulated on a 1/10 scale model of a 65-ton container crane using the full nonlinear model. Simulation results are verified experimentally on a 1/10 scale model of the same container crane.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiao Sun ◽  
Zhihang Xie

A novel backstepping control scheme based on reinforcement fuzzy Q-learning is proposed for the control of container cranes. In this control scheme, the modified backstepping controller can handle the underactuated system of a container crane. Moreover, the gain of the modified backstepping controller is tuned by the reinforcement fuzzy Q-learning mechanism that can automatically search the optimal fuzzy rules to achieve a decrease in the value of the Lyapunov function. The effectiveness of the applied control scheme was verified by a simulation in Matlab, and the performance was also compared with the conventional sliding mode controller aimed at container cranes. The simulation results indicated that the used control scheme could achieve satisfactory performance for step-signal tracking with an uncertain lope length.


Actuators ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 122
Author(s):  
Dejun Yin ◽  
Junjie Wang ◽  
Jinjian Du ◽  
Gang Chen ◽  
Jia-Sheng Hu

Torque distribution control is a key technique for four-wheel independent-drive electric vehicles because it significantly affects vehicle stability and handling performance, especially under extreme driving conditions. This paper, which focuses on the global yaw moment generated by both the longitudinal and the lateral tire forces, proposes a new distribution control to allocate driving torques to four-wheel motors. The proposed objective function not only minimizes the longitudinal tire usage, but also make increased use of each tire to generate yaw moment and achieve a quicker yaw response. By analysis and a comparison with prior torque distribution control, the proposed control approach is shown to have better control performance in hardware-in-the-loop simulations.


2011 ◽  
Vol 08 (01) ◽  
pp. 27-46 ◽  
Author(s):  
JORGE VILLAGRA ◽  
CARLOS BALAGUER

A new model-free approach to precisely control humanoid robot joints is presented in this article. An input–output online identification procedure will permit to compensate neglected or uncertain dynamics, such as, on the one hand, transmission and compliance nonlinear effects, and, on the other hand, network transmission delays. Robustness to parameter variations will be analyzed and compared to other advanced PID-based controllers. Simulations will show that not only good tracking quality can be obtained with this novel technique, but also that it provides a very robust behavior to the closed-loop system. Furthermore, a locomotion task will be tested in a complete humanoid simulator to highlight the suitability of this control approach for such complex systems.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ayaz Ahmed Hoshu ◽  
Liuping Wang ◽  
Alex Fisher ◽  
Abdul Sattar

PurposeDespite of the numerous characteristics of the multirotor unmanned aircraft systems (UASs), they have been termed as less energy-efficient compared to fixed-wing and helicopter counterparts. The purpose of this paper is to explore a more efficient multirotor configuration and to provide the robust and stable control system for it.Design/methodology/approachA heterogeneous multirotor configuration is explored in this paper, which employs a large rotor at the centre to provide majority of lift and three small tilted booms rotors to provide the control. Design provides the combined characteristics of both quadcopters and helicopters in a single UAS configuration, providing endurance of helicopters keeping the manoeuvrability, simplicity and control of quadcopters. In this paper, rotational as well as translational dynamics of the multirotor are explored. Cascade control system is designed to provide an effective solution to control the attitude, altitude and position of the rotorcraft.FindingsOne of the challenging tasks towards successful flight of such a configuration is to design a stable and robust control system as it is an underactuated system possessing complex non-linearities and coupled dynamics. Cascaded proportional integral (PI) control approach has provided an efficient solution with stable control performance. A novel motor control loop is implemented to ensure enhanced disturbance rejection, which is also validated through Dryden turbulence model and 1-cosine gust model.Originality/valueRobustness and stability of the proposed control structure for such a dynamically complex UAS configuration is demonstrated with stable attitude and position performance, reference tracking and enhanced disturbance rejection.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
C. Oktay Azeloglu ◽  
Ayse Edincliler ◽  
Ahmet Sagirli

This paper is concerned with the verification of mathematical modeling of the container cranes under earthquake loadings with shake table test results. Comparison of the shake table tests with the theoretical studies has an important role in the estimation of the seismic behavior of the engineering structures. For this purpose, a new shake table and mathematical model were developed. Firstly, a new physical model is directly fixed on the shake table and the seismic response of the container crane model against the past earthquake ground motion was measured. Secondly, a four degrees-of-freedom mathematical model is developed to understand the dynamic behaviour of cranes under the seismic loadings. The results of the verification study indicate that the developed mathematical model reasonably represents the dynamic behaviour of the crane structure both in time and frequency domains. The mathematical model can be used in active-passive vibration control studies to decrease structural vibrations on container cranes.


Author(s):  
Houda Abidi ◽  
Abdelkader Mami

<span>This work focuses on Model based Predictive Control (MPC) for photovoltaic-wind hybrid energy system connected to electrical grid. Several benefits  are offered by this method  such as robustness against a  parameter variations, minimum output current distortion and excellent reference tracking. In order to minimize the cost function or the error between the  predicted values and their references, MPC-based algorithm permit to select and apply the  optimal voltage vector. Simulation results under Psim environment show a fast dynamic behavior of hybrid system with minimal errors, accuracy and usefulness of the considered control approach.</span>


Author(s):  
Dong Sun ◽  
◽  
Y. X. Su ◽  
James K. Mills ◽  

A position control approach for direct-drive robot manipulators with permanent magnet AC (PMAC) motors is proposed. The conventional vector control architecture has been simplified by specifying the motor stator phase so that the rotating d-axis current is zero. The position control is designed to be an enhanced fuzzy PD controller, by incorporating two nonlinear tracking differentiators into a conventional fuzzy PD controller. The proposed control methodology is easy to implement, and exhibits better control performance than conventional control methods. Experiments conducted on a single-link manipulator directly driven by a PMAC motor demonstrate the validity of the proposed approach.


2014 ◽  
Vol 926-930 ◽  
pp. 1344-1347
Author(s):  
Fang Chen Yin ◽  
Geng Sheng Ma ◽  
Ya Feng Ji ◽  
Zhong Ping Li ◽  
Dian Hua Zhang

Using the characteristics of prediction model, rolling optimization and feedback correction, a AWC system based on explicit indirect predictive control was designed, and its control performance was simulated based on a hot strip continuous mill. The results show that explicit indirect predictive control achieves better control effects than the normal PID on response time and steady precision with matching model; when model mismatching is caused by inaccuracy of plastic coefficient and pure delay time, the normal PID is overshot or even oscillation, but the control performance of the explicit indirect predictive control is not influenced by model parameter variations [1].


2014 ◽  
Vol 20 (2) ◽  
pp. 707-716 ◽  
Author(s):  
Ding Wang ◽  
Derong Liu ◽  
Hongliang Li ◽  
Hongwen Ma ◽  
Chao Li

Sign in / Sign up

Export Citation Format

Share Document