scholarly journals Bacterial Endotoxin Induces Oxidative Stress and Reduces Milk Protein Expression and Hypoxia in the Mouse Mammary Gland

2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Alexander Jonathan Spitzer ◽  
Qing Tian ◽  
Ratan K. Choudhary ◽  
Feng-Qi Zhao

The aim of this study was to investigate the mechanisms underlying the reduced milk production during mastitis. We hypothesized that bacterial endotoxin induces hypoxia, oxidative stress, and cell apoptosis while inhibiting milk gene expression in the mammary gland. To test this hypothesis, the left and right sides of the 4th pair of mouse mammary glands were alternatively injected with either lipopolysaccharide (LPS, E. coli 055: B5, 100 μL of 0.2 mg/mL) or sterile PBS through the teat meatus 3 days postpartum. At 10.5 and 22.5 h postinjection, pimonidazole HCl, a hypoxyprobe, was injected intraperitoneally. At 12 or 24 h after the LPS injection, the 4th glands were individually collected (n=8) and analyzed. LPS treatment induced mammary inflammation at both 12 and 24 h but promoted cell apoptosis only at 12 h. Consistently, H2O2 content was increased at 12 h (P<0.01), but dropped dramatically at 24 h (P<0.01) in the LPS-treated gland. Nevertheless, the total antioxidative capacity in tissue tended to be decreased by LPS at both 12 and 24 h (P=0.07 and 0.06, respectively). In agreement with these findings, LPS increased or tended to increase the mRNA expression of antioxidative genes Nqo1 at 12 h (P=0.05) and SLC7A11 at 24 h (P=0.08). In addition, LPS inhibited mammary expression of Csn2 and Lalba across time and protein expression of Csn1s1 at 24 h (P<0.05). Furthermore, hypoxyprobe staining intensity was greater in the alveoli of the PBS-treated gland than the LPS-treated gland at both 12 and 24 h, demonstrating a rise in oxygen tension by LPS treatment. In summary, our observations indicated that while intramammary LPS challenge incurs inflammation, it induces oxidative stress, increases cell apoptosis and oxygen tension, and differentially inhibits the milk protein expression in the mammary gland.

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Junqiang Yan ◽  
Hongxia Ma ◽  
Xiaoyi Lai ◽  
Jiannan Wu ◽  
Anran Liu ◽  
...  

Abstract Background Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. The oxidative stress is an important component of the pathogenesis of PD. Artemisinin (ART) has antioxidant and neuroprotective effects. The purpose of this study is to explore the neuroprotective effect of ART on 1-methyl-4-phenyliodine iodide (MPP +)-treated SH-SY5Y cells and underlying mechanism. Methods We used MPP+-treated SH-SY5Y cells to study the neuroprotective effect of ART. Cell viability was measured by MTT assay after incubating the cells with MPP+ and/or ART for 24 h. DCFH-DA was used to detect the level of intracellular reactive oxygen species (ROS), and WST-8 was used to detect the level of superoxide dismutase (SOD). The level of intracellular reduced glutathione (GSH) was detected with 5,5΄-dithiobis-(2-nitrobenzoic acid), and the level of malondialdehyde (MDA) was assessed based on the reaction of MDA and thiobarbituric acid. A mitochondrial membrane potential detection kit (JC-1) was used to detect changes in the mitochondrial membrane potential (MMP), and an Annexin V-FITC cell apoptosis kit was used to detect cell apoptosis. The expression levels of caspase-3, cleaved caspase-3 and the autophagy-related proteins LC3, beclin-1, and p62 were detected by Western blotting. In addition, to verify the change in autophagy, we used immunofluorescence to detect the expression of LC3 and p62. Results No significant cytotoxicity was observed at ART concentrations up to 40 μM. ART could significantly increase the viability of SH-SY5Y cells treated with MPP+ and reduce oxidative stress damage and apoptosis. In addition, the Western blotting and immunofluorescence results showed that MPP+ treatment could increase the protein expression of beclin1 and LC3II/LC3I and decrease the protein expression of p62, indicating that MPP+ treatment could induce autophagy. Simultaneous treatment with ART and MPP+ could decrease the protein expression of beclin1 and LC3II/LC3I and increase the protein expression of p62, indicating that ART could decrease the level of autophagy induced by MPP+. Conclusion Our results indicate that ART has a protective effect on MPP+-treated SH-SY5Y cells by the antioxidant, antiapoptotic activities and inhibition of autophagy. Our findings may provide new hope for the prevention and treatment of PD.


2020 ◽  
Vol 191 ◽  
pp. 110185
Author(s):  
Gabriela A. Altamirano ◽  
Ayelen L. Gomez ◽  
Gonzalo Schierano-Marotti ◽  
Mónica Muñoz-de-Toro ◽  
Horacio A. Rodriguez ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 1003-1009
Author(s):  
Liping Hu ◽  
Rui Zhang ◽  
Jianhua Wu ◽  
Chao Feng ◽  
Li Kong

Diabetic retinopathy (DR) is a serious microvascular complication of diabetes, contributing to visual impairment and blindness. Sequoyitol (Seq), a form of inositol derivatives, has been demonstrated to be a therapeutic potential for diabetes and diabetic nephropathy. The aim of this study is to explore the effects of Seq on DR. ARPE-19 cells were cultured in high glucose (HG) condition to simulate DR in vitro. Seq (1,10 and 20 µM) was applied for treatment. CCK-8 assay was performed to detect cell viability. Flow cytometry analysis was conducted to determine cell apoptosis rate. The production level of inflammatory cytokines and oxidative stress-related factors were determined using their commercial kits. The protein expressions of corresponding genes were detected using western blotting. The results revealed that Seq significantly increased cell viability and protein expression of PCNA and Ki67 which were decreased after HG induction. HG promoted cell apoptosis by decreasing protein expression of Bcl-2 and increasing protein expression of Bax and cleaved caspase-3, which was then reversed by Seq treatment. Besides, Seq abolished the promoting effects of HG on the production of pro-inflammatory cytokines and oxidative stress-related factors. Furthermore, Seq suppressed the promoting effect of HG on the activation of NF-κB signaling by inhibiting phosphorylation of kBa and NF-κB nucleus translocation. These results indicated that Seq might protect ARPE-19 cells against HG-induced cell viability, apoptosis, inflammation and oxidative stress by regulating NF-κB signaling, providing evidence for the potential application of Seq in the therapy of DR.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yongxin Li ◽  
Juanjuan Shao ◽  
Pengfei Hou ◽  
Feng-Qi Zhao ◽  
Hongyun Liu

The incidence of mastitis is high during the postpartum stage, which causes severe pain and hinders breast feeding in humans and reduces milk production in dairy cows. Studies suggested that inflammation in multiple organs is associated with oxidative stress and nuclear factor E2-related factor 2 (Nrf2)-antioxidant response element pathway is one of the most important antioxidant pathways, but the effects of Nrf2 on antioxidation in the mammary gland during mastitis are still unclear. In this study, intramammary lipopolysaccharide (LPS) challenge was carried out in wild-type (WT) and Nrf2 knockout mice. Results showed that the expression of Nrf2 affected the expression of milk protein genes (Csn2 and Csn3). Importantly, LPS treatment increased the expression of Nrf2 and HO-1 and the content of glutathione in the mammary gland of WT mice, but not in Nrf2(-/-) mice. The expression levels of glutathione synthesis genes (GCLC, GCLM, and xCT) were lower in Nrf2(-/-) mice than in WT mice. Moreover, mitochondrial-dependent apoptotic and endoplasmic reticulum stress were significantly relieved in WT mice compared with that in Nrf2(-/-) mice. In summary, the expression of Nrf2 may play an important role in prevention of oxidative and organelle stresses during endotoxin-induced mastitis in mouse mammary gland.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Wenjie Tang ◽  
Jing Long ◽  
Tiejun Li ◽  
Lingyuan Yang ◽  
Jianzhong Li ◽  
...  

Zinc lactate (ZnLA) is a new organic zinc salt which has antioxidant properties in mammals and can improve intestinal function. This study explored the effects of ZnLA and ZnSO4 on cell proliferation, Zn transport, antioxidant capacity, mitochondrial function, and their underlying molecular mechanisms in intestinal porcine epithelial cells (IPEC-J2). The results showed that addition of ZnLA promoted cell proliferation, inhibited cell apoptosis and IL-6 secretion, and upregulated the mRNA expression and concentration of MT-2B, ZNT-1, and CRIP, as well as affected the gene expression and activity of oxidation or antioxidant enzymes (e.g., CuZnSOD, CAT, and Gpx1, GSH-PX, LDH, and MDA), compared to ZnSO4 or control. Compared with the control, ZnLA treatment had no significant effect on mitochondrial membrane potential, whereas it markedly increased the mitochondrial basal OCR, nonmitochondrial respiratory capacity, and mitochondrial proton leakage and reduced spare respiratory capacity and mitochondrial reactive oxygen (ROS) production in IPEC-J2 cells. Furthermore, ZnLA treatment increased the protein expression of Nrf2 and phosphorylated AMPK, but reduced Keap1 and p62 protein expression and autophagy-related genes LC3B-1 and Beclin mRNA abundance. Under H2O2-induced oxidative stress conditions, ZnLA supplementation markedly reduced cell apoptosis and mitochondrial ROS levels in IPEC-J2 cells. Moreover, ZnLA administration increased the protein expression of Nrf2 and decreased the protein expression of caspase-3, Keap1, and p62 in H2O2-induced IPEC-J2 cells. In addition, when the activity of AMPK was inhibited by Compound C, ZnLA supplementation did not increase the protein expression of nuclear Nrf2, but when Compound C was removed, the activities of AMPK and Nfr2 were both increased by ZnLA treatment. Our results indicated that ZnLA could improve the antioxidant capacity and mitochondrial function in IPEC-J2 cells by activating the AMPK-Nrf2-p62 pathway under normal or oxidative stress conditions. Our novel finding also suggested that ZnLA, as a new feed additive for piglets, has the potential to be an alternative for ZnSO4.


2021 ◽  
Author(s):  
Junqiang Yan ◽  
Hongxia Ma ◽  
Xiaoyi Lai ◽  
Jiannan Wu ◽  
Anran Liu ◽  
...  

Abstract Background Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. The oxidative stress is an important component of the pathogenesis of PD. Artemisinin (ART) have antioxidant and neuroprotective effects. The purpose of this study was to explore the neuroprotective effect of ART on 1-methyl-4-phenyliodine iodide (MPP+)-treated SH-SY5Y cells and underlying mechanism .Methods We used MPP+-treated SH-SY5Y cells to study the neuroprotective effect of ART. Cell viability was measured by MTT assay after incubating the cells with MPP+ and/or ART for 24 h. DCFH-DA was used to detect the level of intracellular reactive oxygen species (ROS), and WST-8 was used to detect the level of superoxide dismutase (SOD). The level of intracellular reduced glutathione (GSH) was detected using 5,5'-dithiobis-(2-nitrobenzoic acid), and the level of malondialdehyde (MDA) was assessed by measuring the reaction of MDA and thiobarbituric acid. A mitochondrial membrane potential detection kit (JC-1) was used to detect changes in the mitochondrial membrane potential (MMP), and an Annexin V-FITC cell apoptosis kit was used to detect cell apoptosis. The expression levels of caspase-3, cleaved caspase-3 and the autophagy-related proteins LC3, beclin-1, and p62 were detected by Western blotting. In addition, to verify the change in autophagy, we used immunofluorescence to detect the expression of LC3 and p62.Results No significant cytotoxicity was observed at ART concentrations up to 40 μM. ART could significantly increase the viability of SH-SY5Y cells treated with MPP+ and reduce oxidative stress damage and apoptosis. In addition, the Western blotting and immunofluorescence results showed that MPP+ treatment could increase the protein expression of beclin1 and LC3II/LC3I and decrease the protein expression of P62, indicating that MPP+ treatment could induce autophagy. Simultaneous treatment with ART and MPP+ could decrease the protein expression of beclin1 and LC3II/LC3I and increase the protein expression of p62, indicating that ART could decrease the level of autophagy induced by MPP+.Conclusion Our results indicate that ART has a protective effect on MPP+-treated SH-SY5Y cells by the antioxidant, antiapoptotic activities and inhibition of autophagy. Our findings may provide new hope for the prevention and treatment of PD.


2020 ◽  
Author(s):  
Li Wang ◽  
Dian-yong Bi ◽  
Zhu-qing He ◽  
Lei Zhang ◽  
Yu-fang Yang ◽  
...  

Abstract Background: Parkinson’s disease (PD) is a multifactorial neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and the presence of Lewy bodies (LBs) consisting of misfolded α-synuclein protein in the substantia nigra pars compacta (SNpc). Compound Dihuang Granule (CDG), a famous traditional Chinese medicine (TCM) has been clinically used in PD therapy with curative effects. However, the specific functions and the mechanism of action remained unclear. This paper study assesses the preventive and therapeutic effect of CDG on motor deficits and DA neuron loss of PD induced by 6-OHDA and the underlying mechanisms.Methods: PD rat model was induced by unilaterally stereotactic injection of 6-OHDA into the SNpc of midbrain then the motor deficits were evaluated with apomorphine (APO) induced abnormal rotational behaviors. The striatal contents of neurotransmitters were detected by high performance liquid chromatography with electrochemical detection (HPLC-ECD). The number of DA neurons were determined with immunohistochemistry (IHC) staining. Protein expression levels were determined with Western blotting assay. Indicators of oxidative stress were determined with colorimetric method. Apoptotic cells were detected by Transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) assay. The expression of neurotrophic factors was examined with IHC staining.Results: With a 6-week treatment, CDG significantly attenuated the 6-OHDA induced abnormal rotational behaviors and alleviated the loss of DA neurons in the nigrostriatal axis. Consistently, the striatal contents of DA and its metabolites including DOPAC and HVA of PD rats were all significantly increased with CDG treatment. The 6-OHDA induced oxidative stress indicated with decreased superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GSH-Px) and increased malondialdehyde (MDA)was also suppressed by CDG. Moreover, CDG treatment inhibited the 6-OHDA induced cell apoptosis indicated with decreased apoptotic cells in the SNpc and increased protein expression ratio of Bcl-2/Bax in the striatum. The expression levels of neurotrophic factors including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF)in the SNpc of PD rats were also increased by CDG.Conclusion: CDG could ameliorate the 6-OHDA induced brain injuries and motor symptoms mainly by inhibition of the oxidative stress and cell apoptosis in the nigrostriatal axis, and enhancing the expression of neurotrofic factors in the midbrain of rats.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Yi Wen ◽  
Ruohong Liu ◽  
Ning Lin ◽  
Hao Luo ◽  
Jiajia Tang ◽  
...  

NADPH oxidase (Nox) is considered a major source of reactive oxygen species (ROS) in the heart in normal and pathological conditions. However, the role of Nox in severe acute pancreatitis- (SAP-) associated cardiac injury remains unclear. Therefore, we aim to investigate the contribution of Nox to SAP-associated cardiac injury and to explore the underlying molecular mechanisms. Apocynin, a Nox inhibitor, was given at 20 mg/kg for 30 min before SAP induction by a retrograde pancreatic duct injection of 5% sodium taurocholate. Histopathological staining, Nox activity and protein expression, oxidative stress markers, apoptosis and associated proteins, cardiac-related enzyme indexes, and cardiac function were assessed in the myocardium in SAP rats. The redox-sensitive MAPK signaling molecules were also examined by western blotting. SAP rats exhibited significant cardiac impairment along with increased Nox activity and protein expression, ROS production, cell apoptosis, and proapoptotic Bax and cleaved caspase-3 protein levels. Notably, Nox inhibition with apocynin prevented SAP-associated cardiac injury evidenced by a decreased histopathologic score, cardiac-related enzymes, and cardiac function through the reduction of ROS production and cell apoptosis. This protective role was further confirmed by a simulation experiment in vitro. Moreover, we found that SAP-induced activation in MAPK signaling molecules in cardiomyocytes was significantly attenuated by Nox inhibition. Our data provide the first evidence that Nox hyperactivation acts as the main source of ROS production in the myocardium, increases oxidative stress, and promotes cell apoptosis via activating the MAPK pathway, which ultimately results in cardiac injury in SAP.


Sign in / Sign up

Export Citation Format

Share Document