Silencing of Proteasome 26S Subunit ATPase 2 Regulates Colorectal Cancer Cell Proliferation, Apoptosis, and Migration

Chemotherapy ◽  
2019 ◽  
Vol 64 (3) ◽  
pp. 146-154 ◽  
Author(s):  
Jinghu He ◽  
Junjie Xing ◽  
Xiaohong Yang ◽  
Chenxin Zhang ◽  
Yixiang Zhang ◽  
...  

Objective: Colorectal cancer (CRC) remains a major cause of cancer-related death worldwide. Proteasome 26S subunit ATPase 2 (PSMC2) plays vital roles in regulating cell cycle and transcription and has been confirmed to be a gene potentially associated with some human tumors. However, the expression correlation and molecular mechanism of PSMC2 in CRC are still unclear. This study aimed to investigate the role of PSMC2 in malignant behaviors in CRC. Methods: The high protein levels of PSMC2 in CRC samples were identified by tissue microarray analysis. Lentivirus was used to silence PSMC2 in HCT116 and RKO cells; MTT and colony formation assay were performed to determine cell proliferation. Wound healing and Transwell assay were used to detect cell migration and invasion. Flow cytometry assay was applied to detect cell cycle and apoptosis. Result: The results showed that, among the 96 CRC patients, the expression of PSMC2 was a positive correlation with the clinicopathological features of the patients with CRC. Furthermore, the low PSMC2 expression group showed a higher survival rate than the high PSMC2 expression group. The expression levels of PSMC2 in cancer tissue were dramatically upregulated compared with adjacent normal tissues. In vitro, shPSMC2 was designed to inhibit the expression of PSMC2 in CRC cells. Compared with shCtrl, silencing of PSMC2 significantly suppressed cell proliferation, decreased single cell colony formation, enhanced apoptosis, and accelerated G2 phase and/or S phase arrest. Conclusion: Survival analysis indicated that high expression of PSMC2 in the CRC samples was associated with poorer survival rate than low expression of PSMC2, while the anti-tumor effect of PSMC2 silencing was also confirmed at the cellular level in vitro. Our results suggested that PSMC2 potentially worked as a regulator for CRC, and the silencing of PSMC2 may be a therapeutic strategy for CRC.

2021 ◽  
Author(s):  
Zhewen Zheng ◽  
Xue Zhang ◽  
Jian Bai ◽  
Long Long ◽  
Di Liu ◽  
...  

Abstract BackgroundPhosphoglucomutase 1(PGM1) is known for its involvement in cancer pathogenesis. However, its biological role in colorectal cancer (CRC) is unknown. Here, we studied the functions and mechanisms of PGM1 in CRC.Methods We verified PGM-1 as a DEG by a comprehensive strategy of the TCGA-COAD dataset mining and computational biology. Relative levels of PGM-1 in CRC tumors and adjoining peritumoral tissue were identified by qRT-PCR, WB, and IHC staining in a tissue microarray. PGM1 functions were analyzed using CCK8, EdU, colony formation, cell cycle, apoptosis, and Transwell migration and invasion assays. The influence of PGM1 was further investigated using tumor formation in vivo.ResultsPGM1 mRNA and protein were both reduced in CRC and the reduction was related to CRC pathology and overall survival. PGM1 knockdown stimulated both proliferation and colony formation, promoting cell cycle arrest and apoptosis while overexpression has opposite effects in CRC cells both in vivo and in vitro. Furthermore, we lined the actions of PGM1 to the PI3K/ AKT pathway. ConclusionWe verified that PGM1 suppresses CRC through the PI3K/ AKT pathway. These results suggest the potential for targeting PGM1 in CRC therapies.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jiang Liu ◽  
Chengtong Zhai ◽  
Degan Liu ◽  
Jianhua Liu

Objective. To investigate the expression of long noncoding RNA lysyl oxidase-like 1-antisense 1 (LOXL1-AS1) in hepatocellular carcinoma tissues and its effect on cell proliferation, migration, and invasion. Methods. Quantitative real-time PCR was used to analyze the expression of LOXL1-AS1 RNA in tumor tissues, adjacent normal tissues, and cell lines. MTT assay, colony formation assay, flow cytometry analysis, transwell assays, and lentivirus-mediated RNA interference (RNAi) technology were used to evaluate cell proliferation and migration. Results. In the present study, we observed that the expression level of LOXL1-AS1 in hepatocellular carcinoma tissue was significantly higher than that in adjacent nontumor tissues, and its expression in three hepatic carcinoma cell lines was obviously higher than that in a normal cell line. In addition, in the Hep-G2 cell line, LOXL1-AS1 downregulation significantly inhibited cell proliferation in the light of the MTT and colony formation assays in vitro, which was consistent with animal experiment in vivo. What is more, cell migration was also inhibited in vitro in Matrigel Transwell Assay by LOXL1-AS1 knockdown, which might be partly attributed to the reduction of MMP-2 and MMP-9 protein expressions. Finally, cell cycle analysis revealed that knockdown of LOXL1-AS1 induced significantly a G0/G1 phase cell cycle arrest, which might be partly attributed to the downregulation of Cdc2, Cdc25A, and cyclin B1 protein expression. Conclusion. In conclusion, we demonstrated that reduced LOXL1-AS1 expression could inhibit hepatocellular carcinoma cell proliferation, migration, and invasion. The application of RNAi targeting LOXL1-AS1 might be a potential treatment strategy in advanced cases.


2021 ◽  
pp. 1-9
Author(s):  
Haiying Yang ◽  
Jie Liu ◽  
Xue Chen ◽  
Guobin Li

Angiopoietin-like 2 (Angptl2) is reported to be correlated with cardiovascular diseases, but its role in hypertension remains unclear. This study aimed to investigate the role and potential mechanism of Angptl2 in hypertension. Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) were used to detect the expression of Angptl2. Angiotensin II (Ang II) stimulates vascular smooth muscle cells (VSMCs) to mimic hypertension in vitro. Cell proliferation, migration, and invasion abilities were determined using CCK-8, cell colony formation, wound healing, and transwell assays, respectively. The cell cycle distribution was detected by flow cytometry. The expression of Ki67 was determined by immunofluorescence, and protein expression was measured using western blotting. Angptl2 was found to be elevated in hypertensive rats in vivo and in VSMCs upon Ang II stimulation in vitro. Angptl2 knockdown suppressed cell proliferation, colony formation, cell migration, and invasion as well as the downregulation of Ki67. Additionally, Angptl2 knockdown hindered cell cycle progression and downregulated protein expression of CDK2/4 and cyclin D1, but upregulated p21 expression. Furthermore, Angptl2 knockdown inhibited activation of the NLRP3 inflammasome. Our findings suggest that Angptl2 knockdown suppresses VSMC proliferation, migration, and invasion induced by Ang II. Angptl2 may be a new target for vascular remodeling in hypertension.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Chen-Hua Dong ◽  
Tao Jiang ◽  
Hang Yin ◽  
Hu Song ◽  
Yi Zhang ◽  
...  

AbstractColorectal cancer is the second common cause of death worldwide. Lamin B2 (LMNB2) is involved in chromatin remodeling and the rupture and reorganization of nuclear membrane during mitosis, which is necessary for eukaryotic cell proliferation. However, the role of LMNB2 in colorectal cancer (CRC) is poorly understood. This study explored the biological functions of LMNB2 in the progression of colorectal cancer and explored the possible molecular mechanisms. We found that LMNB2 was significantly upregulated in primary colorectal cancer tissues and cell lines, compared with paired non-cancerous tissues and normal colorectal epithelium. The high expression of LMNB2 in colorectal cancer tissues is significantly related to the clinicopathological characteristics of the patients and the shorter overall and disease-free cumulative survival. Functional analysis, including CCK8 cell proliferation test, EdU proliferation test, colony formation analysis, nude mouse xenograft, cell cycle, and apoptosis analysis showed that LMNB2 significantly promotes cell proliferation by promoting cell cycle progression in vivo and in vitro. In addition, gene set enrichment analysis, luciferase report analysis, and CHIP analysis showed that LMNB2 promotes cell proliferation by regulating the p21 promoter, whereas LMNB2 has no effect on cell apoptosis. In summary, these findings not only indicate that LMNB2 promotes the proliferation of colorectal cancer by regulating p21-mediated cell cycle progression, but also suggest the potential value of LMNB2 as a clinical prognostic marker and molecular therapy target.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Jingpeng Wang ◽  
Shuyuan Li ◽  
Gaofeng Zhang ◽  
Huihua Han

Abstract Background Sevoflurane (Sev), a commonly used volatile anesthetic, has been reported to inhibit the process of colorectal cancer (CRC). Circular RNAs (circRNAs) are revealed to participate in the pathogenesis of CRC. This study aims to reveal the mechanism of hsa_circ_0000231 in Sev-mediated CRC progression. Methods The expression of hsa_circ_0000231 and microRNA-622 (miR-622) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein level was determined by western blot analysis. Cell proliferation was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell colony formation and DNA content quantitation assays. Cell apoptosis was detected by Annexin V-fluorescein isothiocyanate and propidium iodide double staining and caspase 3 activity assays. Cell migration and invasion were investigated by wound-healing and transwell invasion assays, respectively. The putative relationship between hsa_circ_0000231 and miR-622 was predicted by circular RNA Interactome online database, and identified by dual-luciferase reporter and RNA immunoprecipitation assays. The impacts of hsa_circ_0000231 on Sev-mediated tumor formation in vivo were presented by in vivo assay. Results Hsa_circ_0000231 expression was upregulated, while miR-622 was downregulated in CRC tissues and cells compared with control groups. Sev treatment decreased hsa_circ_0000231 expression, but increased miR-622 expression in CRC cells. Sev treatment suppressed cell proliferation, migration and invasion, and induced cell apoptosis. Hsa_circ_0000231 overexpression restored Sev-mediated CRC progression in vitro. Additionally, hsa_circ_0000231 acted as a sponge of miR-622, and miR-622 inhibitors reversed the impacts of hsa_circ_0000231 silencing on CRC process. Furthermore, Sev treatment inhibited tumor growth by regulating hsa_circ_0000231 in vivo. Conclusion Hsa_circ_0000231 attenuated Sev-aroused repression impacts on CRC development by sponging miR-622. This findings may provide an appropriate anesthetic protocol for CRC sufferers undergoing surgery.


2014 ◽  
Vol 99 (7) ◽  
pp. E1163-E1172 ◽  
Author(s):  
Wei Qiang ◽  
Yuan Zhao ◽  
Qi Yang ◽  
Wei Liu ◽  
Haixia Guan ◽  
...  

Context: ZIC1 has been reported to be overexpressed and plays an oncogenic role in some brain tumors, whereas it is inactivated by promoter hypermethylation and acts as a tumor suppressor in gastric and colorectal cancers. However, until now, its biological role in thyroid cancer remains totally unknown. Objectives: The aim of this study is to explore the biological functions and related molecular mechanism of ZIC1 in thyroid carcinogenesis. Setting and Design: Quantitative RT-PCR (qRT-PCR) was performed to evaluate mRNA expression of investigated genes. Methylation-specific PCR was used to analyze promoter methylation of the ZIC1 gene. The functions of ectopic ZIC1 expression in thyroid cancer cells were determined by cell proliferation and colony formation, cell cycle and apoptosis, as well as cell migration and invasion assays. Results: ZIC1 was frequently down-regulated by promoter hypermethylation in both primary thyroid cancer tissues and thyroid cancer cell lines. Moreover, our data showed that ZIC1 hypermethylation was significantly associated with lymph node metastasis in patients with papillary thyroid cancer. Notably, restoration of ZIC1 expression in thyroid cancer cells dramatically inhibited cell proliferation, colony formation, migration and invasion, and induced cell cycle arrest and apoptosis by blocking the activities of the phosphatidylinositol-3-kinase (PI3K)/Akt and RAS/RAF/MEK/ERK (MAPK) pathways, and enhancing FOXO3a transcriptional activity. Conclusions: Our data demonstrate that ZIC1 is frequently inactivated by promoter hypermethyaltion and functions as a tumor suppressor in thyroid cancer through modulating PI3K/Akt and MAPK signaling pathways and transcription factor FOXO3a.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Chao Hu ◽  
Xiaobin Zhu ◽  
Taogen Zhang ◽  
Zhouming Deng ◽  
Yuanlong Xie ◽  
...  

Introduction. Osteosarcoma is a malignant tumor associated with high mortality rates due to the toxic side effects of current therapeutic methods. Tanshinone IIA can inhibit cell proliferation and promote apoptosis in vitro, but the exact mechanism is still unknown. The aims of this study are to explore the antiosteosarcoma effect of tanshinone IIA via Src kinase and demonstrate the mechanism of this effect. Materials and Methods. Osteosarcoma MG-63 and U2-OS cell lines were stable transfections with Src-shRNA. Then, the antiosteosarcoma effect of tanshinone IIA was tested in vitro. The protein expression levels of Src, p-Src, p-ERK1/2, and p-AKt were detected by Western blot and RT-PCR. CCK-8 assay and BrdU immunofluorescence assay were used to detect cell proliferation. Transwell assay, cell scratch assay, and flow cytometry were used to detect cell invasion, migration, and cell cycle. Tumor-bearing nude mice with osteosarcoma were constructed. The effect of tanshinone IIA was detected by tumor HE staining, tumor inhibition rate, incidence of lung metastasis, and X-ray. Results. The oncogene role of Src kinase in osteosarcoma is reflected in promoting cell proliferation, invasion, and migration and in inhibiting apoptosis. However, Src has different effects on cell proliferation, apoptosis, and cell cycle regulation among cell lines. At a cellular level, the antiosteosarcoma effect of tanshinone IIA is mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. At the animal level, tanshinone IIA played a role in resisting osteosarcoma formation by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. Conclusion. Tanshinone IIA plays an antiosteosarcoma role in vitro and in vivo and inhibits the progression of osteosarcoma mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways.


2020 ◽  
Author(s):  
Qian Wang ◽  
Wanjun Liu ◽  
Si Chen ◽  
Qianxin Luo ◽  
Yichen Li ◽  
...  

AbstractBackgroundORMDL1 gene encodes a transmembrane protein for endoplasmic reticulum and is known as crucial negative regulator for sphingolipid biogenesis. However, it has been rarely studied in tumor-related context. Therefore, its prognostic value and functional significance in colorectal cancer (CRC) remain to be explored.MethodsTCGA CRC cohort analysis, qRT-PCR, and immunohistochemistry (IHC) were used to examine the ORMDL1 expression level. The association between ORMDL1 expression and various clinical characteristics were analyzed by Chi-square tests. CRC patients’ overall survival (OS) was analyzed by Kaplan-Meier analysis. In vitro and in vivo cell-based assays were performed to explore the role of ORMDL1 in cell proliferation, invasion and migration. Transcriptional changes of cells either with ORMDL1 knockdowned or overexpressed were compared and analyzed.ResultsORMDL1 was upregulated in CRC tissues either in TCGA cohort or in our cohort. Interestingly, its expression was significantly lower in patients with metastasis compared to patients without metastasis, and high expression group had longer OS than low expression group. Knockdown of ORMDL1 expression can promote proliferation, colony formation and invasion, while attenuate migration in CRC cell lines. In opposite, forced overexpression of ORMDL1 reduced cell proliferation, colony formation and invasion, while enhanced cell migration. Epithelial-to-mesenchymal transition (EMT) related genes were enriched among differentially expressed genes when ORMDL1 was knockdowned in cells, which was consistent with morphologic change by microscopy observation. Finally, stable knockdown of ORMDL1 can promote cancer cell proliferation in vivo to some extent.ConclusionORMDL1 is upregulated and may serve as biomarker to predict favourable outcome in colorectal cancer.


2020 ◽  
Vol 19 ◽  
pp. 153303382098010
Author(s):  
Chuan Cheng ◽  
Huixia Li ◽  
Jiujian Zheng ◽  
Jie Xu ◽  
Peng Gao ◽  
...  

Objective: LncRNAs are non-coding RNAs exerting vital roles in the occurrence and development of various cancer types. This study tended to describe the expression pattern of FENDRR in colorectal cancer (CRC), and further investigate the role of FENDRR in CRC cell biological behaviors. Methods: Gene expression profile of colon cancer was accessed from the TCGA database, and then processed for differential analysis for identification of differentially expressed lncRNAs and miRNAs. Some in vitro experiments like qRT-PCR, MTT, colony formation assay, wound healing assay and Transwell assay were performed to assess the effect of FENDRR on cell biological behaviors. Dual-luciferase reporter assay was conducted to further validate the targeting relationship between FENDRR and miR-424-5p, and rescue experiments were carried out for determining the mechanism of FENDRR/miR-424-5p underlying the proliferation, migration and invasion of CRC cells. Results: Bioinformatics analysis suggested that FENDRR was significantly down-regulated in CRC tissue, and low FENDRR was intimately correlated to poor prognosis. FENDRR overexpression could greatly inhibit cell proliferation, migration and invasion. Besides, there was a negative correlation between FENDRR and miR-424-5p. Dual-luciferase reporter assay indicated that miR-424-5p was a direct target of FENDRR. Rescue experiments discovered that FENDRR exerted its role in cell proliferation, migration and invasion in CRC via targeting miR-424-5p. Conclusion: FENDRR is poorly expressed in CRC tissue and cells, and low FENDRR is responsible for the inhibition of cell proliferation, migration and invasion of CRC by means of targeting miR-424-5p.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e23006-e23006 ◽  
Author(s):  
Yintao Li ◽  
Jinming Yu

e23006 Background: Tubulin Polymerization Promoting Protein Family Member 3, TPPP3, a member of the TPPP protein family, has been reported to play important roles in initiation and progression of human cancers, such as lung cancer. However, the expression and underlying function of TPPP3 in colorectal cancer (CRC) have not yet been fully clarified. Methods: In this study, the mRNA and protein levels of TPPP3 in 96 clinical CRC specimens were determined by RT-PCR and immunohistochemistry. The relation between TPPP3 expression and clinicopathologic characteristics and overall survival (OS) were evaluated. TPPP3 was stably knockdowned by shRNA. In addition, CCK-8、Colony formation、Flow cytometric、Transwell and Angiogenesis assay were to examine the biological function of TPPP3 in CRC cells in vitro. Results: We show that TPPP3 was significantly increased in CRC tissues and associated with aggressive factors and poor patient survival. Further experiments showed that knockdown of TPPP3 inhibited cell proliferation, migration and invasion and induced cell apoptosis in vitro. In addition, TPPP3 silencing resulted in a decrease of angiogenesis and S phase fraction. And TPPP3 significantly affected the invasion and migration of CRC cells via the expression of MMP-9, Rac-1 and E-cadherin. Conclusions: Our results suggested that TPPP3 played an important role in CRC progress and might serve as novel therapeutic targets for CRC treatment.


Sign in / Sign up

Export Citation Format

Share Document