scholarly journals Effect of the Time-Varying Damping on the Vibration Isolation of a Quasi-Zero-Stiffness Vibration Isolator

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xin Li ◽  
Jinqiu Zhang ◽  
Jun Yao

This study focuses on the effect of damping changes on the vibration isolation of a quasi-zero-stiffness vibration isolator. A nonlinear-vibration equation for the quasi-zero-stiffness vibration isolator is found and solved using the multiscale method. Then, the vibration characteristics before, in the process of and after the damping change, are also examined. The results show that time-varying damping can be equivalent to the addition of a stiffness term to the vibration system, which leads to a change of the vibration amplitude frequency response, leakage of power spectrum, and corresponding linear spectrum features being weakened. When the damping changes rapidly, the vibration system tends to be divergent rather than stable. After the change, the number of stable focuses of the proposed quasi-zero-stiffness vibration isolator increases from one to two, and the system will see decline in its vibration stability.

2012 ◽  
Vol 152-154 ◽  
pp. 1077-1081 ◽  
Author(s):  
Zhao Qi He ◽  
Yu Chao Song ◽  
Hong Liang Yu

A nonlinear spring-mass model is established to study the dynamic characteristics of nonlinear vibration isolator. By use of ADAMS software, the influence of stiffness, foundation displacement excitation and frequency of external excitation on the nonlinear vibration isolation systems are analyzed. Results indicate that the linear vibration system needs 4s to achieve stability, but the nonlinear vibration system only needs 0.1s. The response value increases with the increase of excitation frequency, the response pick value increases by 61.58% and 102.35% and each corresponding stable value increases by 159.35% and 309.87%.


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042094089
Author(s):  
Shao-Hua Li ◽  
Nan Liu ◽  
Hu Ding

A negative stiffness mechanism consisting of a spring and cylinder is proposed, and a grounded dynamic vibration absorber is designed based on a quasi-zero stiffness vibration isolator to constitute the vibration isolator with a vibration absorber system. The range of parameters for attaining zero stiffness is derived from static analysis. The dynamic analysis of the vibration isolator with a vibration absorber system is carried out by a multiscale method, and the amplitude–frequency response equation of the system is obtained. The influence of different system parameters on the amplitude–frequency response is analyzed. The amplitude–frequency response of the quasi-zero stiffness vibration isolator is compared with that of the vibration isolator with a vibration absorber, and the linear and nonlinear analytical solutions of the vibration isolator with a vibration absorber system are also compared. The results show that the designed vibration isolator with a vibration absorber is an ideal choice for low-frequency vibration isolation, with no large resonance peak throughout the system and significantly improved reliability of the system.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 850-856 ◽  
Author(s):  
Jun-Sheng Duan ◽  
Yun-Yun Xu

Abstract The steady state response of a fractional order vibration system subject to harmonic excitation was studied by using the fractional derivative operator ${}_{-\infty} D_t^\beta,$where the order β is a real number satisfying 0 ≤ β ≤ 2. We derived that the fractional derivative contributes to the viscoelasticity if 0 < β < 1, while it contributes to the viscous inertia if 1 < β < 2. Thus the fractional derivative can represent the “spring-pot” element and also the “inerterpot” element proposed in the present article. The viscosity contribution coefficient, elasticity contribution coefficient, inertia contribution coefficient, amplitude-frequency relation, phase-frequency relation, and influence of the order are discussed in detail. The results show that fractional derivatives are applicable for characterizing the viscoelasticity and viscous inertia of materials.


2022 ◽  
pp. 107754632110514
Author(s):  
Sivakumar Solaiachari ◽  
Jayakumar Lakshmipathy

In this study, a new type of vibration isolator based on fluidic actuators and a composite slab was tested experimentally with an unbalanced disturbance. Quasi-zero stiffness vibration isolation techniques are advanced and provide effective isolation performance for non-nominal loads. The isolation performance of the proposed isolator was compared to that of a nonlinear vibration isolator equipped with fluidic actuators and a mechanical coil spring (NLVIFA). The NLVIFA system is better suited to non-nominal loads; however, the mechanical spring axial deflection leads to limited amplitude reduction in the system. To address this issue, a cross buckled slab was developed to replace a mechanical coil spring for absorbing vertical deflection by transverse bending, which is made of a specially developed composite material of Basalt fiber reinforced with epoxy resin and enhanced with graphene nano pellets. This current study was concerned with the theoretical analysis and experimental investigations of the proposed nonlinear vibration isolator with fluidic actuators and composite material (NLVIFA-CM), which performs under quasi-zero stiffness characteristics. Because of its reduced axial deflection, the theoretical and experimental results show that the NLVIFA-CM system outperforms the NLVIFA system and other linear type vibration isolators in terms of isolation performance. Furthermore, the proposed vibration isolator makes a significant contribution to low-frequency vibration.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Yuhu Shan ◽  
Wenjiang Wu ◽  
Xuedong Chen

In the ultraprecision vibration isolation systems, it is desirable for the isolator to have a larger load bearing capacity and a broader isolation bandwidth simultaneously. Generally, pneumatic spring can bear large load and achieve relatively low natural frequency by enlarging its chamber volume. However, the oversized isolator is inconvenient to use and might cause instability. To reduce the size, a miniaturized pneumatic vibration isolator (MPVI) with high-static-low-dynamic stiffness (HSLDS) is developed in this paper. The volume of proposed isolator is minimized by a compact structure design that combines two magnetic rings in parallel with the pneumatic spring. The two magnetic rings are arranged in the repulsive configuration and can be mounted into the chamber to provide the negative stiffness. Then dynamic model of the developed MPVI is built and the isolation performances are analyzed. Finally, experiments on the isolator with and without the magnetic rings are conducted. The final experimental results are consistent with the dynamical model and verify the effectiveness of the developed vibration isolator.


2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Baoquan Kou ◽  
Yiheng Zhou ◽  
Xiaobao Yang ◽  
Feng Xing ◽  
He Zhang

In this paper, we describe a flat-type vertical-gap passive magnetic levitation vibration isolator (FVPMLVI) for active vibration isolation system (AVIS). A dual-stator scheme and a special stator magnet array are adopted in the proposed FVPMLVI, which has the effect of decreasing its natural frequency, and this enhances the vibration isolation capability of the FVPMLVI. The structure, operating principle, analytical model, and electromagnetic and mechanical characteristics of the FVPMLVI are investigated. The relationship between the force characteristics (levitation force, horizontal force, force ripple, and force density) and major structural parameters (width and thickness of stator and mover magnets) is analyzed by finite element method. The experiment result is in good agreement with the theoretical analysis.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Ali Abolfathi ◽  
M. J. Brennan ◽  
T. P. Waters ◽  
B. Tang

Nonlinear isolators with high-static-low-dynamic-stiffness have received considerable attention in the recent literature due to their performance benefits compared to linear vibration isolators. A quasi-zero-stiffness (QZS) isolator is a particular case of this type of isolator, which has a zero dynamic stiffness at the static equilibrium position. These types of isolators can be used to achieve very low frequency vibration isolation, but a drawback is that they have purely hardening stiffness behavior. If something occurs to destroy the symmetry of the system, for example, by an additional static load being applied to the isolator during operation, or by the incorrect mass being suspended on the isolator, then the isolator behavior will change dramatically. The question is whether this will be detrimental to the performance of the isolator and this is addressed in this paper. The analysis in this paper shows that although the asymmetry will degrade the performance of the isolator compared to the perfectly tuned case, it will still perform better than the corresponding linear isolator provided that the amplitude of excitation is not too large.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Kai Meng ◽  
Yi Sun ◽  
Huayan Pu ◽  
Jun Luo ◽  
Shujin Yuan ◽  
...  

In this study, a novel vibration isolator is presented. The presented isolator possesses the controllable stiffness and can be employed in vibration isolation at a low-resonance frequency. The controllable stiffness of the isolator is obtained by manipulating the negative stiffness-based current in a system with a positive and a negative stiffness in parallel. By using an electromagnetic device consisting of permanent magnetic rings and coils, the designed isolator shows that the stiffness can be manipulated as needed and the operational stiffness range is large in vibration isolation. We experimentally demonstrate that the modeling of controllable stiffness and the approximation of the negative stiffness expressions are effective for controlling the resonance frequency and the transmissibility of the vibration isolation system, enhancing applications such as warship stealth technology, vehicles suspension system, and active vibration isolator.


2014 ◽  
Vol 494-495 ◽  
pp. 491-496
Author(s):  
Hua Ping Mei ◽  
Hao Yue Tian ◽  
Shuan Huang

The vibration isolators have witnessed significant developments due to pressing demands for high resolution metrology and manufacturing, optical, physical and chemical experiments. In the view of these requirements, the engineers and physicists have exploited different types of vibration isolators. This paper firstly presents the recent developments on the passive vibration isolators. It finds that the passive vibration isolators can constrain the high frequency oscillation. The active control is the efficient method to cancel the low frequency vibration. Then, the paper is concerned with the recent advances on the active vibration isolator. The appropriate actuator, sensor and advanced control method are the key component of the active vibration isolator to enhance their vibration isolation properties. Finally, the author proposes that the magnetic suspension vibration isolator is a future research direction in the field of the vibration isolation.


Author(s):  
Susumu Hara ◽  
Kenji Nakamura ◽  
Tatsuo Narikiyo

This study discusses the positioning and vibration control of time-varying vibration systems whose parameters are time-varying. We assume that the time-varying parameter of a vibration system is detected by an on-line measurement or Wavelet analysis. This paper treats two control methods based on nonstationary optimal regulators (NORs) for this problem. The first method is a gain-scheduling of NORs. An actual controller is obtained by the interpolation of plural NORs designed a priori. The other one is an NOR design based on Wavelet analysis of the vibration system. In the second case, single NOR derived from the analysis result is applied. This study shows the effectiveness of these methods by numerical calculations and experiments. From the comparison of these methods, this paper suggests suitable applications of NOR according to the characteristics of each control problem.


Sign in / Sign up

Export Citation Format

Share Document