scholarly journals Research on Theoretical Modeling and Parameter Sensitivity of a Single-Rod Double-Cylinder and Double-Coil Magnetorheological Damper

2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Suojun Hou ◽  
Gang Liu

For the single-rod double-cylinder and double-coil magnetorheological (MR) damper studied in this paper, the damping force model of the damper is established by adopting multidisciplinary domain modeling method bond graph theory. Firstly, combined with the structure of the MR damper, the bond graph model of the MR damper was established, the damping force model of the damper was derived through the bond graph theory, and the influence factors, such as the displacement, velocity, and acceleration of the damper were considered in the model. Based on the simulation of force-displacement and force-velocity characteristics of the damping force carried out by the damper theoretical model under different currents and velocities as well as the comparison with the damper bench test results, it was found that the force-displacement and force-velocity characteristic experiment curves of the damper agreed well with the simulation results. Under different working conditions, the maximum error of damping force of the MR damper was 7.2%. The damping force model of the MR damper studied in this paper was compared with that of the damper without considering the inertia force of MR fluid, and the influence of the inertia force of MR fluid on the damping force of the MR damper was analyzed. The results show that when the frequency of the damper is large, the inertial force of MR fluid has an important influence on the damping force; therefore, considering the inertial force of MR fluid in the model can greatly improve the accuracy of the model. The influence degree of key parameters on the damping force of the MR damper was studied through the theoretical model; such key parameters ranging from large to small were the channel clearance, energizing current, piston diameter, motion velocity, channel length, zero-field viscosity of MR fluid, and nitrogen pressure. This provides a basis for the adjustment of the damping force of the MR damper.

1999 ◽  
Author(s):  
Mehdi Ahmadian

Abstract The design and fabrication of a magneto rheological (MR) damper for bicycle suspension applications is addressed. Two 1998 Judy® Dampers are retrofitted with MR valves, to achieve the damping force adjustability that the MR fluid offers. One design attempts to use as many of the Judy® Damper components as possible. The second design significantly modifies the Judy® Damper, to better accommodate the MR valve and ease of fabrication and assembly, although fitting into the same envelope as the Judy® damper for a direct retrofit. The two MR dampers are fabricated and assembled for force-velocity characterization testing. The test results show that properly-designed MR dampers can provide significant dynamic performance improvements, as compared to conventional passive bicycle dampers.


2020 ◽  
Vol 21 (3) ◽  
pp. 1149 ◽  
Author(s):  
Jong-Seok Oh ◽  
Chang Won Shul ◽  
Tae Hyeong Kim ◽  
Tae-Hoon Lee ◽  
Sung-Wan Son ◽  
...  

In this study, a new double pulse waveform-generating test system with an integrated magnetorheological (MR) damper is proposed. Since the total shear stress of MR fluid can be varied according to the shape of particles, sphere-like iron particles-based MR fluid is filled into the MR damper. The test system consists of a velocity generator, three masses (impact, test, and dummy), a spring, and an MR damper. To tune the double pulse waveform profile, a damping force model is constructed to determine the fundamental parameters of the simulator. Then, the first and second shock waveform profiles are analyzed to solve the governing equation of motions representing the damping force and velocity. The mathematical model of the MR damper is formulated and applied to a simulator with a graphical user interface programmed using MATLAB. The effectiveness of the proposed simulator-featuring controllable MR damper is demonstrated by comparing the simulation and experimental results.


Author(s):  
Riaan F. Meeser ◽  
P. Schalk Els ◽  
Sudhir Kaul

This paper presents the design of a magneto-rheological (MR) damper for an off-road vehicle where large suspension travel and high flow rates, as compared to typical passenger car suspensions, are required. The MR damper is expected to enhance the capability of the suspension system by allowing variable damping due to inherent properties of the MR fluid. MR fluids exhibit a reversible behavior that can be controlled with the intensity of a magnetic field, allowing a change in the effective viscosity and thereby in the damping characteristics of the fluid. A mathematical model of the proposed damper has been developed using the Bingham plastic model so as to determine the necessary geometry for the damper designed in this study, using the fluid flow rate and current to the electromagnet as the input variables. The model is used to compute the damping force, and the analytical results show that the designed MR damper provides the required range of damping force for the specific vehicle setup that is being used for this study. A valve-mode MR fluid channel has been designed such that the required minimum damping is reached in the off-state, and the desired maximum damping is reached in the on-state. For manufacturing and size considerations, the final design incorporates a triple pass layout with the MR fluid flowing through the three passages that are arranged in an S-shape so as to minimize the cross section of the electromagnet core.


Author(s):  
Toshihiko Shiraishi ◽  
Tomoya Sakuma ◽  
Shin Morishita

Two typical types of MR damper were proposed, where the orifice for MR fluid was designed to place between the piston and the cylinder in one type, and to place on the piston in the other type. In the former design, MR fluid was expected to be subjected to shear flow in the orifice, and subjected to Poiseuille flow in the latter design. The damping force of MR dampers was experimentally measured under various conditions of piston speed, piston amplitude and applied electric current to the magnetic coil. The experimental results showed that the maximum damping force were almost the same in both types of damper under the same conditions, except for case under very little amplitude. It was also shown that typical characteristics of MR damper depended on the clearance of orifice and air volume in MR dampers, and the optimal design for the dynamic range of damping force existed in relation to the clearance of orifice. The experimental result of the damping force of these dampers showed good agreement with the analytical result.


Author(s):  
A. M. Salem ◽  
S. Olutunde Oyadiji

The dynamic performance of automotive vehicles is influenced by the suspension system design. Suspensions owing damping elements with a wide range of non-linear behaviour can provide higher mobility and better ride comfort performances. Pneumatic suspensions due to their inherent nonlinear behaviour can provide high mobility performance while suspensions with MR dampers can provide this nonlinearity through the controllable damping force produced by the control of the MR fluid. The pneumatic and MR suspension models are usually developed from experimental force-displacement and force-velocity characteristics. The purpose of this paper is to measure and compare the dynamic characteristics of pneumatic, magnetorheological, and hydraulic shock absorbers. The study is carried out through measuring the characteristics of the different types of dampers at different frequencies and amplitudes using an Electro-Servo Hydraulic (ESH) testing machine. The shock absorber is subjected to sinusoidal excitation of frequency varying from 0 to 10 Hz, and amplitude varying from 0 to 10 mm. In the case of the MR damper, the tests are also done at different current levels of between 0 and 2 amp. The input displacement and acceleration to the shock absorber were measured using an LVDT (Linear Voltage Displacement Transducer) and an accelerometer, respectively while the input velocity was derived from the measured displacement and acceleration. This dual identification of the input velocity was done in order to ensure accurate representation of the velocity. The output force response of the shock absorber was measured by means of a force transducer. The force-displacement and force-velocity characteristics of each shock absorber were subsequently derived from the measured data. The results show the tunability of the MR damper characteristics in comparison to those of the pneumatic and hydraulic dampers.


2012 ◽  
Vol 187 ◽  
pp. 311-314
Author(s):  
Hai Jun Xing

In this paper, utilizing Herschel-Bulkley model, the equation of MR fluid pressure gradient is derived in order to predict MR damper’s force-velocity behavior. The equation, showing as a complicated nonlinear algebraic expression including various parameters, is then simplified to a nondimensional equation. This is followed by the analysis of the root of this nondimensional equation and an approximate root closely corresponding to numerical result is given.


Author(s):  
Elliza Tri Maharani ◽  
U. Ubaidillah ◽  
Fitrian Imaduddin ◽  
K.M. Wibowo ◽  
Dewi Utami ◽  
...  

An experimental study was undertaken to evaluate the mathematical modelling of the magnetorheological (MR) damper featuring annular radial gap on its valve. The experiment was conducted using a fatigue dynamic test machine under particular excitation frequency and amplitude to get force-velocity and force-displament characteristics. Meanwhile, the mathematical modelling was done using quasi-steady modelling approach. Simulation using adaptive neuro fuzzy inference (ANFIS) Algorithm (Gaussian and Generalized Bell) were also carried out to portray the damping force-displacement modelling that is used to compare with the experimental results. The experimental characteristics show that amplitudes excitation and current input affect the result damping force value. The comparison of the experimental and mathematical results presented in this paper shows a significant difference in damping force value and that the quasi-steady modelling could not significantly approach the damping force-velocity results. Moreover, the semi-active damper is compared to the passive damper. The results show that a semi-active damper performs better than a passive damper because it only requires a little power. Based on the damping force-displacement modelling, it can be seen that Gaussian has a higher accuracy rather than Generalized Bell. Discussion on the energy dissipation and equivalent damping coefficient were also accomodated in this paper. Having completed in mathematical modelling and simulation, the damper would be ready for further work in-vehicle application that is development of control system.


2011 ◽  
Vol 66-68 ◽  
pp. 1126-1131
Author(s):  
Hao Jun Zhou ◽  
Hong Sheng Hu ◽  
Xue Zheng Jiang

Magnetorheological (MR) fluid is capable of changing its rheological characteristics under magnetic field. Controllability is one of the advantages of MR damper. Up to now, the dynamic characteristics of MR damper under impact loads have not been well known by researchers. In this paper, a new type of dynamic model for MR damper subject to impact load is derived. And in this novel model, it is pointed out that the square damping item and the inertia force item are two important factors which influence the total damping force in impact condition. The adding two items make the model more exactly describing its dynamic characteristics of MR damper in impact condition. This action makes the established model easier to do control analysis. Because of the polynomial form and a fixed coefficient, it is indicated that the optimization control method is a good choice for MR damper to track the demanded impact curves. Simulation analysis results prove that based on its controllability of damping force MR damper provide, its vibration-reduction and shock-resistant properties of MR damper under impact load will also be greatly improved.


2013 ◽  
Vol 284-287 ◽  
pp. 1778-1782
Author(s):  
Kum Gil Sung

This paper presents vibration control responses of a multi-story structure installed with a semi-active magneto-rheological(MR) damper. As a first step, performance characteristics of three different working modes for MR fluid are compared and the mixed mode type of MR damper is chosen as an optimal candidate for the vibration control of the multi-story structure. An appropriate size of the mixed mode MR damper is devised and manufactured on the basis of the field-dependent Bingham model of the MR fluid which is commercially available. The damping force of the mixed mode MR damper is evaluated with respect to the excitation frequency at various magnetic fields. After formulating the governing equation of motion for the small scaled three-story structure associated with the MR damper, the linear quadratic regulator(LQR) controller to effectively suppress unwanted structural vibrations is designed by imposing semi-active actuating conditions. The control algorithm is then empirically implemented under earthquake conditions and the control responses of the horizontal relative displacement and acceleration are evaluated in time and frequency domains through computer simulations.


Author(s):  
S. Siva Kumar ◽  
K.S. Raj Kumar ◽  
Navaneet Kumar

Magnetorheological (MR) fluid damper has been designed, fabricated and tested to find the stiffness and damping characteristics. Experimentally the MR damper has been tested to analyse the behaviour of MR fluid as well as to obtain the stiffness for varying magnetic field. MR damper mathematical model has been developed for evaluating dynamic response for experimentally obtained parameters. The experimental results show that the increase of applied electric current in the MR damper, the damping force will increase remarkably up to the saturation value of current. The numerical simulation results that stiffness of the MR damper can be varied with the current value and increase the damping forces with the reduced amplitude of excitation. Experimental and theoretical results of the MR damper characteristics demonstrate that the developed MR damper can be used for vibration isolation and suppression.


Sign in / Sign up

Export Citation Format

Share Document