scholarly journals Phloretin Modulates Human Th17/Treg Cell Differentiation In Vitro via AMPK Signaling

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Ao Jiao ◽  
Zhaoming Yang ◽  
Xibo Fu ◽  
Xiangdong Hua

Context. The imbalance between T helper 17 (Th17) cell and regulatory T (Treg) cell is involved in many immune disorders and diseases. Phloretin, a dihydrochalcone structural flavonoid compound, possesses many bioactive properties. However, whether phloretin could impact on the differentiation of T cells is not completely clear. Objective. We conducted studies to explore the effect of phloretin on glucose uptake, proliferation, and differentiation of human peripheral blood CD4+ T cells and investigated the mechanism of phloretin on inducing Th17/Treg development. Methods. Naïve CD4+ T cells were purified from peripheral blood of healthy volunteers, stimulated with anti-CD3/CD28 antibodies, and polarized in vitro to generate Th17 or Treg cells. Glucose uptake, proliferation, cell cycle, protein expression (phospho-Stat3, phospho-Stat5), and Th17 and Treg cell numbers were analyzed by flow cytometry. AMP-activated protein kinase (AMPK) signaling was analyzed by western blot. Results and Discussion. Phloretin could inhibit the glucose uptake and proliferation of activated CD4+ T cells. The proliferation inhibition was due to the G0/G1 phase arrest. Phloretin decreased Th17 cell generation and phospho-Stat3 expression as well as increased Treg cell generation and phospho-Stat5 expression in the process of inducing Th17/Treg differentiation. The phosphorylation level of AMPK was significantly enhanced, while the phosphorylation level of mTOR was significantly decreased in activated CD4+ T cells under phloretin treatment. The AMPK signaling inhibitor compound C (Com C) could neutralize the effect of phloretin, while the agonist 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) could impact the Th17/Treg balance similar to phloretin during Th17/Treg induction. Conclusion. Our results suggest that phloretin can mediate the Th17/Treg balance by regulating metabolism via the AMPK signal pathway.

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0239713
Author(s):  
Emma B. O’Connor ◽  
Natalia Muñoz-Wolf ◽  
Gemma Leon ◽  
Ed C. Lavelle ◽  
Kingston H. G. Mills ◽  
...  

Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier superfamily that can mediate the transfer of protons into the mitochondrial matrix from the intermembrane space. We have previously reported UCP3 expression in thymocytes, mitochondria of total splenocytes and splenic lymphocytes. Here, we demonstrate that Ucp3 is expressed in peripheral naive CD4+ T cells at the mRNA level before being markedly downregulated following activation. Non-polarized, activated T cells (Th0 cells) from Ucp3-/- mice produced significantly more IL-2, had increased expression of CD25 and CD69 and were more proliferative than Ucp3+/+ Th0 cells. The altered IL-2 expression observed between T cells from Ucp3+/+ and Ucp3-/- mice may be a factor in determining differentiation into Th17 or induced regulatory (iTreg) cells. When compared to Ucp3+/+, CD4+ T cells from Ucp3-/- mice had increased FoxP3 expression under iTreg conditions. Conversely, Ucp3-/- CD4+ T cells produced a significantly lower concentration of IL-17A under Th17 cell-inducing conditions in vitro. These effects were mirrored in antigen-specific T cells from mice immunized with KLH and CT. Interestingly, the altered responses of Ucp3-/- T cells were partially reversed upon neutralisation of IL-2. Together, these data indicate that UCP3 acts to restrict the activation of naive T cells, acting as a rheostat to dampen signals following TCR and CD28 co-receptor ligation, thereby limiting early activation responses. The observation that Ucp3 ablation alters the Th17:Treg cell balance in vivo as well as in vitro suggests that UCP3 is a potential target for the treatment of Th17 cell-mediated autoimmune diseases.


2019 ◽  
Vol 1 (4) ◽  
pp. 16-20 ◽  
Author(s):  
A. V. Lugovaya ◽  
N. M. Kalinina ◽  
V. Ph. Mitreikin ◽  
Yu. P. Kovaltchuk ◽  
A. V. Artyomova ◽  
...  

Apoptosis, along with proliferation, is a form of lymphocyte response to activating stimuli. In the early stages of cell differentiation, the apoptotic response prevails and it results to the formation of tolerance to inductor antigen. Mature lymphocytes proliferate in response to stimulation and it means the initial stage in the development of the immune response. Since in this case apoptosis and proliferation acts as alternative processes, their ratio can serve as a measure of the effectiveness of the cellular response to activating signals. The resistance of autoreactive T-cells to apoptosis is the main key point in the development of type 1 diabetes mellitus (T1DM). Autoreactive T-cells migrates from the bloodstream to the islet tissue of the pancreas and take an active part in b cells destruction. The resistance of autoreactive effector T-cells to apoptosis may suggest their high proliferative potential. Therefore, the comparative evaluation of apoptosis and proliferation of peripheral blood lymphocytes can give a more complete picture of their functional state and thus will help to reveal the causes of ineffective peripheral blood T-ceiis apoptosis in patients with T1DM and will help to understand more deeply the pathogenesis of the disease. in this article, the features of proliferative response of peripheral blood T-cells in patients with T1DM and in individuals with high risk of developing T1DM have been studied. Apoptosis of T-cell subpopulations has been investigated. The correlation between the apoptotic markers and the intensity of spontaneous and activation- induced in vitro T-cells proliferation of was revealed. it was determined, that autoreactive peripheral blood T-cells were resistant to apoptosis and demonstrated the increased proliferative potential in patients with T1DM and in individuals with high risk of developing T1DM.


Inflammation ◽  
2013 ◽  
Vol 37 (3) ◽  
pp. 745-755
Author(s):  
Minchao Duan ◽  
Ying Huang ◽  
Xiaoning Zhong ◽  
Haijuan Tang

Author(s):  
Kuan Lai ◽  
Wenjing Zhang ◽  
Songshan Li ◽  
Zhiwen Zhang ◽  
Shuangde Xie ◽  
...  

Abstract Pemphigus vulgaris (PV) is a chronic and potentially life-threatening autoimmune blistering disease. Aberrant mTOR pathway activity is involved in many autoimmune diseases. This study investigated the correlation of mTOR pathway (PI3K/AKT/mTOR/p70S6K) activity with the loss of balance in T helper 2/regulatory T (Th2/Treg) cells in the peripheral blood of PV patients. CD4+ T cells were isolated from 15 PV patients and 15 healthy controls (HCs), the ratios of Th2/CD4+ T cells and Treg/CD4+ T cells, the activity of the mTOR pathway (PI3K/AKT/mTOR/p70S6K), the transcription factors and cytokines of Th2 and Treg cells were detected. Primary CD4+ T cells from PV patients were cultured under Th2- or Treg-polarizing conditions with or without rapamycin in vitro. We found that PV patients showed significantly elevated serum IL-4 when compared with HCs, and serum IL-4 level was positively correlated with the titer of anti-Dsg1/3 antibody and disease severity, while the serum TGF-β level was negatively correlated with the titer of anti-Dsg3 antibody and disease severity. Meanwhile, PV patients showed increased Th2/CD4+ T cell ratio; decreased Treg/CD4+ T cell ratio; elevated mRNA of PI3K, AKT, mTOR and protein of PI3K (P85), AKT, p-AKT (Ser473), mTOR, p-mTOR (Ser2448), p-p70S6K (Thr389), GATA3; reduced protein of forkhead box protein 3. Rapamycin inhibited Th2 cell differentiation and promoted Treg cell differentiation in vitro. These data suggest a close association between mTOR pathway activation and the loss of balance in Th2/Treg cells in peripheral blood of PV patients. Inhibiting mTORC1 can help restore the Th2/Treg balance.


2021 ◽  
Vol 22 (2) ◽  
pp. 912
Author(s):  
Nabila Seddiki ◽  
John Zaunders ◽  
Chan Phetsouphanh ◽  
Vedran Brezar ◽  
Yin Xu ◽  
...  

HIV-1 infection rapidly leads to a loss of the proliferative response of memory CD4+ T lymphocytes, when cultured with recall antigens. We report here that CD73 expression defines a subset of resting memory CD4+ T cells in peripheral blood, which highly express the α-chain of the IL-7 receptor (CD127), but not CD38 or Ki-67, yet are highly proliferative in response to mitogen and recall antigens, and to IL-7, in vitro. These cells also preferentially express CCR5 and produce IL-2. We reasoned that CD73+ memory CD4+ T cells decrease very early in HIV-1 infection. Indeed, CD73+ memory CD4+ T cells comprised a median of 7.5% (interquartile range: 4.5–10.4%) of CD4+ T cells in peripheral blood from healthy adults, but were decreased in primary HIV-1 infection to a median of 3.7% (IQR: 2.6–6.4%; p = 0.002); and in chronic HIV-1 infection to 1.9% (IQR: 1.1–3%; p < 0.0001), and were not restored by antiretroviral therapy. Moreover, we found that a significant proportion of CD73+ memory CD4+ T cells were skewed to a gut-homing phenotype, expressing integrins α4 and β7, CXCR3, CCR6, CD161 and CD26. Accordingly, 20% of CD4+ T cells present in gut biopsies were CD73+. In HIV+ subjects, purified CD73+ resting memory CD4+ T cells in PBMC were infected with HIV-1 DNA, determined by real-time PCR, to the same level as for purified CD73-negative CD4+ T cells, both in untreated and treated subjects. Therefore, the proliferative CD73+ subset of memory CD4+ T cells is disproportionately reduced in HIV-1 infection, but, unexpectedly, their IL-7 dependent long-term resting phenotype suggests that residual infected cells in this subset may contribute significantly to the very long-lived HIV proviral DNA reservoir in treated subjects.


Blood ◽  
2008 ◽  
Vol 112 (13) ◽  
pp. 4953-4960 ◽  
Author(s):  
Mojgan Ahmadzadeh ◽  
Aloisio Felipe-Silva ◽  
Bianca Heemskerk ◽  
Daniel J. Powell ◽  
John R. Wunderlich ◽  
...  

Abstract Regulatory T (Treg) cells are often found in human tumors; however, their functional characteristics have been difficult to evaluate due to low cell numbers and the inability to adequately distinguish between activated and Treg cell populations. Using a novel approach, we examined the intracellular cytokine production capacity of tumor-infiltrating T cells in the single-cell suspensions of enzymatically digested tumors to differentiate Treg cells from effector T cells. Similar to Treg cells in the peripheral blood of healthy individuals, tumor-infiltrating FOXP3+CD4 T cells, unlike FOXP3− T cells, were unable to produce IL-2 and IFN-γ upon ex vivo stimulation, indicating that FOXP3 expression is a valid biological marker for human Treg cells even in the tumor microenvironment. Accordingly, we enumerated FOXP3+CD4 Treg cells in intratumoral and peritumoral sections of metastatic melanoma tumors and found a significant increase in proportion of FOXP3+CD4 Treg cells in the intratumoral compared with peritumoral areas. Moreover, their frequencies were 3- to 5-fold higher in tumors than in peripheral blood from the same patients or healthy donors, respectively. These findings demonstrate that the tumor-infiltrating CD4 Treg cell population is accurately depicted by FOXP3 expression, they selectively accumulate in tumors, and their frequency in peripheral blood does not properly reflect tumor microenvironment.


1983 ◽  
Vol 158 (2) ◽  
pp. 571-585 ◽  
Author(s):  
A Moretta ◽  
G Pantaleo ◽  
L Moretta ◽  
M C Mingari ◽  
J C Cerottini

In order to directly assess the distribution of cytolytic T lymphocytes (CTL) and their precursors (CTL-P) in the two major subsets of human T cells, we have used limiting dilution microculture systems to determine their frequencies. The two subsets were defined according to their reactivity (or lack thereof) with B9.4 monoclonal antibody (the specificity of which is similar, if not identical, to that of Leu 2b monoclonal antibody). Both B9+ and B9- cells obtained by sorting peripheral blood resting T cells using the fluorescence-activated cell sorter (FACS) were assayed for total CTL-P frequencies in a microculture system that allows clonal growth of every T cell. As assessed by a lectin-dependent assay, approximately 30% of peripheral blood T cells were CTP-P. In the B9+ subset (which represents 20-30% of all T cells), the CTL-P frequency was close to 100%, whereas the B9- subset had a 25-fold lower CTL-P frequency. It is thus evident that 90% and 10% of the total CTL-P in peripheral blood are confined to the B9+ or B9- T cell subsets, respectively. Analysis of the subset distribution of CTL-P directed against a given set of alloantigens confirmed these findings. CTL-P frequencies were also determined in B9+ and B9- subsets derived from T cells that had been activated in allogenic mixed leucocyte cultures (MLC). Approximately 10% of MLC T cells were CTL-P. This frequency was increased 3.5-fold in the B9+ subset, whereas the B9- subset contained only a small, although detectable number of CTL-P. Moreover, the great majority of the (operationally defined) CTL-P in MLC T cell population were found to be directed against the stimulating alloantigens, thus indicating a dramatic increase in specific CTL-P frequencies following in vitro stimulation in bulk cultures.


2009 ◽  
Vol 16 (6) ◽  
pp. 798-805 ◽  
Author(s):  
Soad Nady ◽  
James Ignatz-Hoover ◽  
Mohamed T. Shata

ABSTRACT Recently, a new lineage of CD4+ T cells in humans and in mice has been reported. This T helper cell secretes interleukin-17 (IL-17) and has been defined as T helper 17 (Th17). Th17 cells express the IL-23 receptor (IL-23R) and play an important pathogenic role in different inflammatory conditions. In this study, our aim was to characterize the optimum conditions for isolation and propagation of human peripheral blood Th17 cells in vitro and the optimum conditions for isolation of Th17 clones. To isolate Th17 cells, two steps were taken. Initially, we negatively isolated CD4+ T cells from peripheral blood mononuclear cells of a normal human blood donor. Then, we isolated the IL-23R+ cells from the CD4+ T cells. Functional studies revealed that CD4+ IL-23R+ cells could be stimulated ex vivo with anti-CD3/CD28 to secrete both IL-17 and gamma interferon (IFN-γ). Furthermore, we expanded the CD4+ IL-23R+ cells for 1 week in the presence of anti-CD3/CD28, irradiated autologous feeder cells, and different cytokines. Our data indicate that cytokine treatment increased the number of propagated cells 14- to 99-fold. Functional evaluation of the expanded number of CD4+ IL-23R+ cells in the presence of different cytokines with anti-CD3/CD28 revealed that all cytokines used (IL-2, IL-7, IL-12, IL-15, and IL-23) increased the amount of IFN-γ secreted by IL-23R+ CD4+ cells at different levels. Our results indicate that IL-7 plus IL-12 was the optimum combination of cytokines for the expansion of IL-23R+ CD4+ cells and the secretion of IFN-γ, while IL-12 preferentially stimulated these cells to secrete predominately IL-17.


Sign in / Sign up

Export Citation Format

Share Document