scholarly journals Flexural Behaviour of Unbonded Posttensioned Concrete Beam Strengthened with Aluminium Alloy Plates

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Hong Chang ◽  
Wei Zhou

Owing to their high corrosion resistance, aluminium alloy (AA) plates bonded with magnesium phosphate cement (MPC) are considered as a viable candidate for reinforcing inshore infrastructures that are subject to severe environmental conditions and vapor atmospheres. Therefore, the aim of this study is the evaluation of the flexural behaviour of simple beams that are strengthened using this technique. Six unbonded posttensioned concrete (UPC) beams with different reinforcement ratios are damaged by static loads and then repaired and strengthened using AA plates. The failures under two-point loading are then investigated. Thereafter, a simplified method is proposed for the evaluation of the flexural strength of a UPC beam strengthened by an AA plate with MPC. The flexural strengths of the six specimens increase by an average of 14%, and the displacement ductility factor decreases by an average of 34.14%. Moreover, the increase and decrease ratios are proportional and inversely proportional to the comprehensive reinforcement index, respectively. The influences of the three main factors on the flexural strength of the AA plate are determined: the increase in the stress of the unbonded tendons, stress at the midspan and slippage at the ends of the AA plate, and increase ratio of the flexural strength. It shows that the AA plates bonded with MPC can be used successfully in concrete strengthening.

2007 ◽  
Vol 63 (3) ◽  
pp. 459-467
Author(s):  
Kunihiro ISHIDA ◽  
Isamu YOSHITAKE ◽  
Hironobu HAMAOKA ◽  
Sumio HAMADA

2003 ◽  
Vol 19 (4) ◽  
pp. 863-895 ◽  
Author(s):  
Leslie M. Megget

The seismic performance of eleven half-scale and three full-sized reinforced concrete beam-column knee joints was tested under inelastic cyclic loading. Twelve joints were designed to the current New Zealand Concrete Standard, NZS 3101 while the remaining two were designed to the 1964 New Zealand Code, which contained few seismic provisions. All the 1995 designs approached or exceeded their nominal beam strengths in both directions and only degraded in strength at displacement ductility factors greater than 2, while the 1960 designs failed prematurely in joint shear at about 70% of the beam nominal strengths. Many of the half-scale joints failed when cover concrete split off in the joint zone, allowing loss of anchorage and slip of the top beam bars. Two full-scale joints were designed to carry the maximum specified code joint shear stress (0.2 fc′), and one subsequently failed due to joint shear when the concrete compressive strength did not reach the specified design value. A third full-size joint was tested with distributed beam reinforcement. This joint performed in a ductile manner to displacement ductility 4 but failed in the second cycle at that displacement, due to buckling of several rows of beam bars.


2015 ◽  
Vol 754-755 ◽  
pp. 457-462 ◽  
Author(s):  
Agus Supriyadi ◽  
Stefanus Adi Kristiawan ◽  
Sandy Raditya

This research is aimed to investigate the flexural behaviour of patched reinforced concrete beam with patching material made from unsaturated polyester resin mortar. The variable studied is the dimension of patching zone as compared to the control beam (without patching). Based on the load-deflection observation of the beam under a four-point bending loading, it is confirmed that the flexural behaviour of the patched reinforced concrete beam is similar to that of control beam at a loading up to about peak load. After this load the patched reinforced concrete beam tends to behave more ductile. The patched reinforced concrete beam show less cracking density compared to control concrete.


2012 ◽  
Vol 166-169 ◽  
pp. 881-884
Author(s):  
Bao Rong Huo ◽  
Xiang Dong Zhang

12 RC columns were made, including nine RC columns wrapped with BFRP, three RC columns without any reinforcement, to conduct the comparative study of axial compression. The result shows that the bearing capacity of the RC columns reinforced with the fibers increases obviously.The displacement ductility factor increases, but its increase rate becomes slow with increasing layers of fiber cloth, so the most economical layer number is 3. Based on the confinement mechanism of FRP cloth and the calculation formula of the bearing capacity for common RC column, the formula of the bearing capacity for reinforced RC column with BFRP cloth is proposed. The result of calculation basically tallies with the number in experiment.


Author(s):  
Mahadeva Reddy ◽  
Adaveesh B ◽  
Mohankumar T S ◽  
Madeva Nagaral

New composites materials are developed to meet the demand for medical devices, vehicles, protective equipment, sporting goods, etc. In present investigations, the effects of graphite filler particles in the epoxy were studied separately by preparing epoxy with 5 and 10 vol.% of graphite filler particles composites by hand layup technique. Further, the combined effect of graphite filler particles and pineapple leaf fibers (PALF) on the mechanical behaviour of epoxy composites was studied by preparing epoxy with 5 vol.% of graphite -30 vol.% of PALF and epoxy with 10 vol.% of graphite -30 vol.% of PALF composites. Prepared composites were subjected to evaluating various mechanical properties like tensile strength, elongation, and flexural strength as per ASTM standards. By adding graphite filler particles and PALF fibers tensile, and flexural strength were improved with a slight reduction in the percentage elongation. Further, these conventional results were validated by FEM analysis using MSC Patran and Nastran Student Version.


Sign in / Sign up

Export Citation Format

Share Document