scholarly journals Link Budget Analysis for 5G Communication in the Tropical Regions

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Trilochan Patra ◽  
Swarup Kumar Mitra

In the tropical regions, when a signal is transmitted from a transmitter to a receiver, the signal gets highly attenuated because of heavy rainfall. By using different diversity techniques, this signal attenuation is minimized. The multiple-input multiple-output (MIMO) system is an antenna diversity technique, and in this paper, this technique has been applied to the proposed communication link model designed for 5G communication in the tropical regions. Here, a proposed link budget has been set down to enhance the signal power and signal-to-noise ratio (SNR) at the receiver. In this paper, an experimental data sheet has also been adopted to achieve the desired result of the proposed link budget. In fine, a comparison of assumption values of the proposed link budget with practical values obtained from the experimental data sheet has been displayed in the result analysis part.

2021 ◽  
Vol 11 (20) ◽  
pp. 9409
Author(s):  
Roger Kwao Ahiadormey ◽  
Kwonhue Choi

In this paper, we propose rate-splitting (RS) multiple access to mitigate the effects of quantization noise (QN) inherent in low-resolution analog-to-digital converters (ADCs) and digital-to-analog converters (DACs). We consider the downlink (DL) of a multiuser massive multiple-input multiple-output (MIMO) system where the base station (BS) is equipped with low-resolution ADCs/DACs. The BS employs the RS scheme for data transmission. Under imperfect channel state information (CSI), we characterize the spectral efficiency (SE) and energy efficiency (EE) by deriving the asymptotic signal-to-interference-and-noise ratio (SINR). For 1-bit resolution, the QN is very high, and the RS scheme shows no rate gain over the non-RS scheme. As the ADC/DAC resolution increases (i.e., 2–3 bits), the RS scheme achieves higher SE in the high signal-to-noise ratio (SNR) regime compared to that of the non-RS scheme. For a 3-bit resolution, the number of antennas can be reduced by 27% in the RS scheme to achieve the same SE as the non-RS scheme. Low-resolution DACs degrades the system performance more than low-resolution ADCs. Hence, it is preferable to equip the system with low-resolution ADCs than low-resolution DACs. The system achieves the best SE/EE tradeoff for 4-bit resolution ADCs/DACs.


Author(s):  
Felix Obite ◽  
Jafri Din ◽  
Kamaludin Mohammad Yusof ◽  
Basliza M. Noor

<p>In the last few years, High Altitude Platforms (HAPs) have attracted considerable effort due to their ability to exploit the advantages of satellite and terrestrial-based systems. Rain attenuation is the most dominant atmospheric impairment, especially at such frequency band. This paper addresses the modelling of rain attenuation and describes a propagation channel model for HAPs at Ka-band to provide efficient and robust wireless access for tropical regions. The attenuation due to rain is modeled based on three years measured data for Johor Bahru to estimate the actual effect of rain on signals at Ka band. The radio propagation channel is usually characterized as a random multipath channel. Specifically, a statistical derivation of probability distribution function for Rayleigh and Rician fading channels are presented. The model consists of multiple path scattering effects, time dispersion, and Doppler shifts acting on the HAPs communication link. Simulation results represent the fading signal level variations. Results show perfect agreement between simulation and theoretical, thereby conforming to the multipath structures. The information obtained will be useful to system engineers for HAPs link budget analysis in order to obtain the required fade margin for optimal system performance in tropical regions.</p>


Author(s):  
A. I. O. Yussuff

The restrained use of millimeter bands is due to severe rain attenuation. Attenuation is caused when rain cells intersects radio wave’s propagation path; resulting in deep fades. The effect of rainfall is more severe in tropical regions characterized by heavy rainfall intensity and large raindrops; hence, rain attenuation analyses are essential to study rain fade characteristics for use in earth-space link budget analysis, for outage prediction resulting from rain attenuation. Tropical regions are particularly challenged with signal outage, necessitating the formulation and development of suitable prediction model(s) for the region. Therefore, extensive knowledge of the propagation phenomena mitigating system availability and signal quality in these bands are required. Daily rainfall data were collected from the Nigerian Meteorological Services for Lagos for spanning January to December 2010. Results showed that although, the ITU-R model out-performed the other prediction models under consideration, none of prediction models matched the measurement data.


2020 ◽  
Vol 58 (11) ◽  
pp. 22-27
Author(s):  
Kari Rikkinen ◽  
Pekka Kyosti ◽  
Marko E. Leinonen ◽  
Markus Berg ◽  
Aarno Parssinen

2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Jinwoo Kim ◽  
Chung G. Kang

A fundamental performance trade-off of multicell multiuser multiple-input multiple-output (MU-MIMO) systems is explored for achieving intercell and intracell interference-free conditions. In particular, we analyze the three-dimensional diversity-multiplexing-nulling trade-off (DMNT) among the diversity order (i.e., the slope of the error performance curve), multiplexing order (i.e., the number of users that are simultaneously served by MU-MIMO), and nulling order (i.e., the number of users with zero interference in a victim cell). This trade-off quantifies the performance of MU-MIMO in terms of its diversity and multiplexing order, while nulling the intercell interference toward the victim cell in the neighbor. First, we design a precoding matrix to mitigate both intercell and intracell interference for a linear precoding-based MU-MIMO system. Then, the trade-off relationship is obtained by analyzing the distribution of the signal-to-noise ratio (SNR) at the user terminals. Furthermore, we demonstrate how DMNT can be applied to estimate the long-term throughput for each mobile station, which allows for determining the optimal number of multiplexing order and throughput loss due to the interference nulling.


Author(s):  
M. Akhtaruzzaman ◽  
S. M. Sadakatul Bari ◽  
Syed Akhter Hossain ◽  
Md. Mahbubur Rahman

In satellite communication, Link Budget analysis is the most important part to determine gains and losses of signals from the transmitter to the receiver. Most importantly, it investigates system performance and optimum power which must be received at the receiver channel. In some cases, this information could be generated, saved for past data analysis, and share with peer users which are not found in existing web tools. Thus, it is obvious to design a new Link Budget calculator with users, database, and data retrieval support. This work focuses on designing a Link Budget web tool for X-band satellite communication through literature study and comparative analysis. The X-Band calculator is designed based on HTML, PHP, Javascript, and MySQL by ensuring several security issues, and can be accessed through mobile devices. This paper also focuses on the necessary equations of Link Budget for Uplink (Tx); Satellite; Downlink (Rx); Azimuth, Elevation, Distance analysis; and Rain attenuation. Though, comparative assessments among various web tools show some fluctuations, overall outputs show satisfactory results with small % of Errors (PoE) ensuring reliability and viability of the proposed X-Band tool for practical use.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Shiqi Wang ◽  
Lin Ma ◽  
Xuedong Wang

As an emerging paradigm, supplying power by radio frequency signal has been a key technology for the wireless powered communication network (WPCN) to prolong the lifetime. This paper considers a multiple input multiple output (MIMO) system where users are charged only by one source. The source is equipped with multiple antennas while each user with one antenna. Besides receiving information as the traditional way, the source has the capacity to transfer energy with beamforming, which can be harvested by users to store for information transmission in the later. However, the unknown channel state information (CSI), low energy efficiency, and various demands of transmitting volume jointly raise inaccurate, wasteful, and flexible conditions in transmitting design. On the other hand, energy and spectrum efficient solutions are indispensable to the success of Internet of Things (IoT). In this case, we put forward a novel design of downlink energy transfer, uplink information transmission, and channel estimation to achieve a practical efficient transmission. By jointly optimizing the source antenna number, power allocation, energy beamforming vectors, and each phase time of channel estimation, energy harvest, and information transmission, we aim to achieve the optimized system energy efficiency with constraints of signal-to-noise ratio (SNR), data transmission volume, and transmitting power. Based on fractional programming and Lagrangian dual functions, we also put forward a distributed iterative algorithm to solve the formulated problem optimally. Simulation results verify the convergence of our proposed algorithm and illustrate the relationship between variables of antenna number, data volume requirement, pathloss factor and system performance of sum-throughput, energy efficiency, and user fairness. Our proposed transmitting design can achieve the optimized energy efficiency, whose upper bound is improved by appropriate massive antenna employment.


Sign in / Sign up

Export Citation Format

Share Document