scholarly journals Sodium Tanshinone IIA Sulfonate Attenuates Erectile Dysfunction in Rats with Hyperlipidemia

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Liren Zhong ◽  
Wei Ding ◽  
Qingyu Zeng ◽  
Binglin He ◽  
Haibo Zhang ◽  
...  

Hyperlipidemia is considered one of the most important risk factors for erectile dysfunction (ED). To determine the effect of sodium tanshinone IIA sulfonate (STS) as an antioxidant agent on ED in high-fat diet- (HFD-) induced hyperlipidemia in rats and to investigate if STS administration could improve erectile function via hydrogen sulfide (H2S) production by inhibition of oxidative stress. Hyperlipidemia was induced in Sprague-Dawley rats by feeding HFD for 16 weeks. The rats were randomly divided into 3 groups: control, HFD, and HFD treated with STS (10 mg/kg/day for 12 weeks, intraperitoneal injection). Erectile function including intracavernosal pressure (ICP), H2S production, and antioxidant capacity was assessed. In addition, cavernosal smooth muscle cells (CSMC) isolated from SD rats were pretreated with STS in vitro and exposed to H2O2. Expressions of nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1), activity of antioxidant enzymes, and H2S-generating enzymes within CSMC were examined. ICP was significantly decreased in HFD rats compared with control. In addition, decreased H2S production and expression of cystathionine ɣ-lyase (CSE) and cystathionine β-synthase (CBS) associated with increased oxidative stress were observed in the penile tissue of HFD rats. However, all these changes were reversed by 16 weeks after STS administration. STS also increased antioxidant defense as evidenced by increased expression of Nrf2/HO-1 in the penile tissue of HFD rats. In CSMC, pretreatment with STS attenuated the decreased expression of CSE and CBS and H2S production by H2O2. STS exerted similar protective antioxidative effect as shown in the in vivo hyperlipidemia model. The present study demonstrated the redox effect of STS treatment on ED via increased H2S production in HFD-induced hyperlipidemia rat model by increased antioxidant capacity via activation of the Nrf2/HO-1 pathway, which provides STS potential clinical application in the treatment of hyperlipidemia-related ED.

2018 ◽  
Vol 38 (2) ◽  
pp. 247-254 ◽  
Author(s):  
WX Zhang ◽  
XY Xiao ◽  
CG Peng ◽  
WL Chen ◽  
S Xie ◽  
...  

Objective: To investigate the therapeutic effect and mechanism of sodium tanshinone IIA sulfate (STS) on paraquat (PQ)-induced myocardial injuries in a rat model. Methods: Healthy adult Sprague Dawley rats were randomly divided into normal control, PQ, and PQ + STS groups. PQ group was given a single intragastric administration of PQ (80 mg/kg). PQ + STS group was intraperitoneally injected with STS (1 ml/kg) at 30 min following PQ exposure. Rats in control and PQ groups were injected with equal amount of saline. After 12, 24, 48, and 72 h, rats were killed, and the apoptosis of myocardial cells was detected. Myocardial expression of Bax and Bcl-2 was measured. The activity of the nuclear erythroid 2-related factor 2 (Nrf2) pathway was assessed by Western blot. Results: The apoptotic cells in PQ group were significantly increased in a time-dependent manner compared with the control group ( p < 0.01). The rats in PQ group exhibited significantly lower Bcl-2 expression, but notably higher Bax expression at 12, 24, 48, and 72 h after PQ exposure ( p < 0.05 or 0.01). STS intervention markedly reduced the proportion of apoptotic myocardial cells, increased Bcl-2 expression, and decreased Bax expression at 24, 48, and 72 h after treatment ( p < 0.05 or 0.01). The expression of phosphorylated Nrf2 and heme oxygenase 1 in PQ + STS group was significantly increased compared with PQ and control groups ( p < 0.05 or 0.01). Conclusion: STS effectively inhibits PQ-induced myocardial cell apoptosis in rats via modulating the Nrf2 pathway, suggesting its potential as a promising therapeutic agent for PQ-induced myocardium damage.


Author(s):  
Xigang Luo ◽  
Dapeng Sun ◽  
Yinxiang Wang ◽  
Fengxiang Zhang ◽  
Yi Wang

Various liver diseases caused by liver damage seriously affect people’s health. The purpose of this study was to clarify that the effects and mechanism of Carnitine palmitoyltransferase 1 (Cpt1a) on oxidative stress and inflammation in liver injury. It was found that the expression of Cpt1a mRNA was up-regulated in model mice of liver injury. So, over-expression of Cpt1a increased reactive oxygen species (ROS) production and malondialdehyde (MDA) levels, and reduced superoxide dismutase (SOD), glutathione (GSH) and glutathione peroxidase (GSH-px) levels in vitro model of liver injury. It was also shown that over-expression of Cpt1a suppressed the Nuclear factor-erythroid-2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) signaling pathway. In summary, these data indicate that Cpt1a promotes ROS-induced oxidative stress in liver injury via the Nrf2/HO-1 and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome signaling pathway.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Woong Jin Bae ◽  
U. Syn Ha ◽  
Jin Bong Choi ◽  
Kang Sup Kim ◽  
Su Jin Kim ◽  
...  

Higher testicular temperature results in altered spermatogenesis due to heat-related oxidative stress. We examined the effects of decursin extracted fromAngelica gigasNakai on antioxidant activityin vitroand in a cryptorchidism-induced infertility rat model. TM3 Leydig cell viability was measured based on oxidative stress according to treatment. Either distilled water or AG 400 mg/kg ofA. gigasextract was administered orally for 4 weeks after unilateral cryptorchidism was induced. After 1, 2, and 4 weeks, six rats from the control group and six rats from treatment group were sacrificed. Testicular weight, semen quality, antioxidant activities, nuclear factor erythroid 2-related factor 2 (Nrf2) protein, and mRNA expression of Nrf2-regulated genes were analyzed. Treatment withA. gigasextract (1) protected TM3 cells against oxidative stress in a dose-dependent manner, (2) improved the mean weight of the cryptorchid testis, (3) maintained sperm counts, motility, and spermatogenic cell density, (4) decreased levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) and increased levels of superoxide dismutase (SOD), (5) significantly increased Nrf2 and heme oxygenase-1 (HO-1), and (6) significantly decreased apoptosis. This study suggests that decursin extracted fromA. gigasis a supplemental agent that can reduce oxidative stress by Nrf2-mediated upregulation of HO-1 in rat experimentally induced unilateral cryptorchidism and may improve cryptorchidism-induced infertility.


2019 ◽  
Author(s):  
Xiao-Bin Zhang ◽  
Xiao-Yang Chen ◽  
Xiao-Man Su ◽  
Hui-Qing Zeng ◽  
Yi-Ming Zeng ◽  
...  

Abstract Objective The present study was designed to determine the effect of sodium tanshinone IIA sulfonate (TSA) on tumor oxidative stress and apoptosis in a mouse model of intermittent hypoxia (IH) which was considered a novel feature of obstructive sleep apnea. Materials and methods Mice were randomly assigned to control (normoxia) group (CTL), control plus TSA (CTL+TSA) group, IH group, and IH plus TSA (IH+TSA) group. The IH exposure lasted for 5 weeks. TSA was intraperitoneally injected in the CTL+TSA and IH+TSA group. Malondialdehyde (MDA) and superoxide dismutase (SOD) were detected for tumor oxidative stress levels. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and western blotting of Bax, Cleaved Caspase-3 were conducted for evaluating tumor apoptotic levels. The expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and NF-κB were also evaluated by western blotting. Results Compared with the CTL group, mice exposed to the IH had higher MDA and lower SOD levels, and the TUNEL-positive cell rate, Bax and Cleaved Caspase-3 expressive levels were decreased in the IH group. The oxidative stress indexes were suppressed and the apoptotic levels were upregulated after treatment with TSA under the IH condition. The lower Nrf2 and higher NF-κB levels can be reversed by tretment with TSA under the IH condition. Conclusions The IH contributes to high oxidative stress and low apoptosis in tumor-bearing mice. TSA appears to improve IH-induced oxidative stress and apoptosis via Nrf2/NF-κB signaling pathway.


2017 ◽  
Vol 26 (3) ◽  
pp. 169-77 ◽  
Author(s):  
Kamalia Layal ◽  
Ika S. Perdhana ◽  
Melva Louisa ◽  
Ari Estuningtyas ◽  
Vivian Soetikno

Background: Oxidative stress may play a role in the pathogenesis of (CKD), Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor involved in cell defense mechanism against oxidative stress. In this study, we examined the effect of quercetin, a polyphenplic antioxidant anti fibrosis compund in fruits and vegetables, on the 5/6 nephrectomy-induced CKD progression model rats through modulation of Nrf2 expression.Methods: Male Sprague-Dawley rats were randomly divided into normal control group (C), untreated 5/6 nephrectomy (Nx), quercetin-treated 5/6 nephrectomy (100 mg/kgBW/day orally) (NxQ), and captopril-treated 5/6 nephrectomy (10 mg/kgBW/day orally) (NxK) for 8 weeks. At the end of study, all animals were sacrified. Urine, blood, and kidney tissues were taken for examination of proteinuria, plasma creatinine, urea, malondialdehyde (MDA), glutathione peroxidase (GPx) activity, Nrf2, Keap1, heme oxygenase-1 (HO-1) expressions, and renal fibrosis.Results: Quercetin administration did not affect the level of protein in urine, plasma creatinine, and urea. However, it tended to reduce the level of MDA, increase GPx activity, Nrf2, Keap1, and HO-1 expression as well as the degree of fibrosis.Conclusion: In 5/6 nephrectomized rats, quercetin tended to ameliorate the level of MDA, GPx activity, Nrf2, Keap1, and HO-1 expression. In addition, quercetin tended to decrease the degree of fibrosis in the remnant kidney.


2017 ◽  
Vol 45 (07) ◽  
pp. 1441-1457 ◽  
Author(s):  
Lin An ◽  
Mei Zhou ◽  
Faiz M. M. T. Marikar ◽  
Xue-Wen Hu ◽  
Qiu-Yun Miao ◽  
...  

Diabetic nephropathy (DN) is a common cause of chronic kidney disease and end-stage renal disease, which can be triggered by oxidative stress. In this study, we investigated the renoprotective effect of the ethyl acetate extract of Salvia miltiorrhiza (EASM) on DN and examined the underlying molecular mechanism. We observed that EASM treatment attenuated metabolic abnormalities associated with hyperglycemic conditions in the experimental DN model. In streptozotocin (STZ)-induced mice, EASM treatment reduced albuminuria, improved renal function and alleviated the pathological alterations within the glomerulus. To mimic the hyperglycemic conditions in DN patients, we used high glucose (25[Formula: see text]mmol/L) media to stimulate mouse mesangial cells (MMCs), and EASM inhibited high glucose-induced reactive oxygen species. We also observed that EASM enhanced the expression of nuclear factor erythroid-2-related factor 2 (Nrf2), which mediated the anti-oxidant response, and its downstream gene heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1) with concomitant decrease of expression of kelch-like ECH-associated protein 1 (keap1) both in vitro and in vivo. Taken together, these results suggest that EASM alleviates the progression of DN and this might be associated with activation of Nrf2.


2021 ◽  
Vol 11 ◽  
Author(s):  
Renhe Wang ◽  
Haijun Zhao ◽  
Yingyu Zhang ◽  
Hai Zhu ◽  
Qiuju Su ◽  
...  

Renal ischemia–reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and has no effective treatment. Exploring the molecular mechanisms of renal IRI is critical for the prevention of AKI and its evolution to chronic kidney disease and end-stage renal disease. The aim of the present study was to determine the biological function and molecular mechanism of action of miR-92a-3p in tubular epithelial cell (TEC) pyroptosis. We investigated the relationship between nuclear factor-erythroid 2-related factor 1 (Nrf1) and TEC pyroptosis induced by ischemia–reperfusion in vivo and oxygen–glucose deprivation/reoxygenation (OGD/R) in vitro. MicroRNAs (miRNAs) are regulators of gene expression and play a role in the progression of renal IRI. Nrf1 was confirmed as a potential target for miRNA miR-92a-3p. In addition, the inhibition of miR-92a-3p alleviated oxidative stress in vitro and decreased the expression levels of NLRP3, caspase-1, GSDMD-N, IL-1β, and IL-18 in vitro and in vivo. Moreover, Zn-protoporphyrin-IX, an inhibitor of heme oxygenase-1, reduced the protective effect of Nrf1 overexpression on OGD/R-induced TEC oxidative stress and pyroptosis. The results of this study suggest that the inhibition of miR-92a-3p can alleviate TEC oxidative stress and pyroptosis by targeting Nrf1 in renal IRI.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Youguang Pu ◽  
Yiao Tan ◽  
Chunbao Zang ◽  
Fangfang Zhao ◽  
Cifeng Cai ◽  
...  

AbstractLong-noncoding RNAs (lncRNAs) play roles in regulating cellular functions. High-throughput sequencing analysis identified a new lncRNA, termed LAMTOR5-AS1, the expression of which was much higher in the chemosensitive osteosarcoma (OS) cell line G-292 than in the chemoresistant cell line SJSA-1. Further investigations revealed that LAMTOR5-AS1 significantly inhibits the proliferation and multidrug resistance of OS cells. In vitro assays demonstrated that LAMTOR5-AS1 mediates the interaction between nuclear factor erythroid 2-related factor 2 (NFE2L2, NRF2) and kelch-like ECH-associated protein 1 (KEAP1), which regulate the oxidative stress. Further mechanistic studies revealed that LAMTOR5-AS1 inhibited the ubiquitination degradation pathway of NRF2, resulting in a higher level of NRF2 but a loss of NRF2 transcriptional activity. High level of NRF2 in return upregulated the downstream gene heme oxygenase 1 (HO-1). Moreover, NRF2 controls its own activity by promoting LAMTOR5-AS1 expression, whereas the feedback regulation is weakened in drug-resistant cells due to high antioxidant activity. Overall, we propose that LAMTOR5-AS1 globally regulates chemotherapy-induced cellular oxidative stress by controlling the expression and activity of NRF2.


2020 ◽  
pp. 074823372097942
Author(s):  
Guangtao Yang ◽  
Yingping Xiang ◽  
Wei Zhou ◽  
Xiaohuan Zhong ◽  
Yanfang Zhang ◽  
...  

The bromoalkane, 1-bromopropane (1-BP), may damage the reproductive system though oxidative stress, while the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) plays an important role in regulating intracellular antioxidant levels against oxidative stress. This study explored the role of oxidative stress and the Nrf2 signaling pathway in mediating the reproductive toxicity of 1-BP using the ovarian carcinoma cell line OVCAR-3 as an in vitro model of the human ovary. OVCAR-3 cells were treated with 1, 5, 10 and 15 mM 1-BP. After 24 h, the cellular reactive oxygen species and malondialdehyde concentrations significantly increased, while the superoxide dismutase activity decreased; translocation of Nrf2 from the cytosol to the nucleus as well as downstream protein expression of Nrf2-regulated genes heme oxygenase-1 and Bcl-2 was inhibited. Apoptosis was also observed, accompanied by increased caspase-3 and caspase-9 activity. The antioxidant vitamin C alleviated 1-BP-induced apoptosis by inhibiting caspase activity activating the Nrf2 signaling pathway. These findings suggested that 1-BP induced oxidative stress and apoptosis in OVCAR-3 cells through inactivation of Nrf2 signaling.


2016 ◽  
Vol 32 (12) ◽  
pp. 1952-1960
Author(s):  
Ming Zhang ◽  
Yanrang Wang ◽  
Xiaojun Wang ◽  
Jing Liu ◽  
Jingshu Zhang ◽  
...  

Ethylbenzene is an important industrial chemical, but its potential toxicity is a recent concern. Our previous study investigated the renal toxicity of ethylbenzene in vivo. Rat renal epithelial cells (NRK-52E cells) were incubated with 0, 30, 60, and 90 µmol/L of ethylbenzene for 24 h in vitro to investigate ethylbenzene-induced oxidative stress, apoptosis, and the expression of heme oxygenase 1 (HO-1) and nuclear factor (erythroid 2)-related factor 2 (Nrf2). The cell survival rate in the ethylbenzene-treated groups was significantly lower than the control group. Ethylbenzene significantly increased intracellular reactive oxygen species and apoptosis. Malondialdehyde levels were significantly elevated compared with the control group, while glutathione levels and glutathione peroxidase activities were decreased in ethylbenzene-treated groups. The activities of catalase and superoxide dismutase were also markedly reduced. A significant dose-dependent increase in HO-1 and Nrf2 messenger RNA expression levels was observed in ethylbenzene-treated groups compared with the control group. Similarly, ethylbenzene treatment enhanced protein expression of HO-1 and Nrf2 in a dose-dependent manner. Our results indicated that ethylbenzene induced oxidative stress, apoptosis, and upregulation of HO-1 and Nrf2 in NRK-52E cells, which contributes to ethylbenzene-induced renal toxicity.


Sign in / Sign up

Export Citation Format

Share Document